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Variance Gamma process in the option pricing model 

Author 

Jakub Drahokoupil1 

Abstract 

The aim of this paper is to apply Variance Gamma process in the option pricing model and compare it 

with the well-known and widely used option pricing model, the Black-Scholes model. The Variance 

Gamma model is, in contrast to the one-parameter Black-Scholes model, a three-parameter model. In 

addition, these two parameters, which are included in the Variance Gamma model, serve to model the 

skewness and kurtosis of the empirical distribution of the logarithmic returns of the underlying asset. 

An important part of this work is also a comparison of suitable valuation algorithms for calculation of 

the option price using the Variance Gamma model. The comparison of both models will be performed 

primarily on historical empirical distributions of logarithmic returns of selected stocks. Then, 

performance and pricing error of both models will be tested when estimating implied coefficients 

based on market data of the options. The performance of both models will be measured by traditional 

statistical-econometric methods such as RMSE, Likelihood ratio, Akaike information criterion and last 

but not least by the Natural spline regression model, which estimates the effect of the variable 

"Moneyness" (distance between the strike price and the current asset value) on the pricing error. All 

tests performed in this work suggest that the Variance Gamma model is a more accurate model for 

calculating the price of options. 

AMS/JEL classification: G13, C10 

Keywords: option pricing models; Variance Gamma model; Lévy processes; Black-Scholes model; Fast 

Fourier Transformation; Stochastic processes 

1. Introduction 

One of the most used models for option pricing, Black-Scholes model, relies on several significant 

assumptions, of which some have been with certainty proven to be not valid in the real world. 

Existence of non-Gaussian character of the logarithmic returns or the stochastic volatility are examples 

proving invalidity of certain Black-Scholes model assumptions. Other Black-Scholes model’s 

assumptions, such as infinite variance of the underlying stochastic process (price of the underlying 

asset may not rise to infinity) or the assumption of almost surely continuous trajectories of the 

underlying process (existence of jumps), are practically unrealistic (CONT R., Empirical properties of 

asset returns: stylized facts and statistical issues, 2002).  
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University of Economics and Business, Prague, Czech Republic; Email: draj05@vse.cz. 
 
This paper has been prepared under the financial support of the Czech Science Foundation Grant research 
project 18-05244S, “Innovation Approaches to Credit Risk Management”, and by the VŠE internal grants IGA 
102029 and IP100040/1020. 
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Several authors have already addressed the problematics of Non-Gaussian characters, for example 

Mandelbrot or Fama, even before the publication of Black-Scholes model. Gaussian character of the 

empirical distribution may be violated in the three dimensions. First, the kurtosis of the empirical 

distribution may be higher (and in most cases truly is) or lower. Second the skewness may be non-zero, 

or the empirical distribution will have so called Fat Tails (TALEB, 2013). In fact, regarding the finance 

world, the empirical distributions are mostly leptokurtic (higher kurtosis and fat tails). The Variance 

Gamma model (process) is one of the promising models (processes) which may be able to estimate the 

empirical distribution more accurately and may be able to remove, or at least highly reduce, the 

volatility smile phenomenon, as it is possible that it may be partially caused by the inaccurate 

estimation of the risk within the Black-Scholes model framework. 

The second main problematics mentioned above, stochastic volatility, can be proofed when the 

volatility level is plotted with the time on the x-axis and volatility level on the y-axis. There exist periods 

where volatility is higher and periods where it is low. The level of the volatility often changes suddenly 

by the jump (SCHOUTENS, 2003) and (BATES, 1996). However, Variance Gamma model does not 

include the solution for this problematic and will not be discussed any further in this paper. 

2. Variance Gamma process and Lévy process 

Variance Gamma process, Wiener process or Poisson process are all stochastic processes which belong 

among the Lévy processes, named after the French mathematician Paul Lévy. The Lévy processes 

include continuous and jump (point) processes (CAPASSO, 2005). Variance Gamma process is pure 

jump process without any continuous component. However, it is a process that accounts for high 

activity by having an infinite number of jumps in any interval of time, by which it may resemble the 

Brownian motion. Thus, Variance Gamma process could more accurately describe the empirical 

leptokurtic financial distributions of logarithmic returns, as price development of the asset is often 

influenced by the suddenly incoming and highly important price-making information, which results 

rather in the significant price jump. Models, which include jumps, then offer better matematical 

apparatus for higher and less often price jump, which implies the Fat Tail leptocurtic ditributions. 

(FIORANI, 2009). We can define the general Lévy process with the following definitoin: 

 
Definition: Lévy process 

Let φ(u) be characteristic function of the distribution. If, for each positive natural number n, is the 

function φ(u) also nth power of the very same characteristic function φ(u), then the distribution is 

infinitely divisible. 

For each such infinitely divisible distribution we may define the stochastic process 𝑋 = {𝑋𝑡, 𝑡 ≥ 0}. 

The 𝑋 can be called Lévy process when the following is applicable: 

• X origins in zero 

• X has independent and stationary increments such that its distribution over [𝑠, 𝑠 + 𝑡] where 

𝑠, 𝑡 ≥ 0, or 𝑋𝑡+𝑠 − 𝑋𝑠 has characteristic function equal to (𝜑(𝑢))
𝑡
 

• The process fulfils the càdlàg property, or its trajectories {𝑋𝑡} are continuous from right and 

there exist a limit from the left 

• For any 𝜀 > 0 is lim
s→0

P(|Xt+s- Xt| > ε) = 0  

(SCHOUTENS, 2003) 
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2.1. Variance Gamma process 

In the previous chapter, it has been shown that the approximation of the empirical logarithmic returns 

with the Non-Gaussian process may lead to more accurate description of the future price behaviour 

and thus may lead to more accurate estimation of the option price. It has been shown that the 

appropriate alternative process may come from the family of the Lévy processes. The Variance Gamma 

process from this family of stochastic processes may be the appropriate one and its application will be 

discussed further in the paper.  

The Variance Gamma process can be constructed throughout two definitions. For better 

understanding of this process, both definitions will be now presented. 

1st definition of Variance Gamma process – with the Brownian component 

Let’s assume stochastic process 𝐺 = {𝐺𝑡; 𝑡 ≥ 0} as subordinating gamma process with parameters μ 

as mean rate and 𝜈 as variance rate. Next, let’s assume stochastic process 𝑊 = {𝑊𝑡; 𝑡 ≥ 0} as an 

independent standard Brownian motion. Stochastic process 𝑉 = {𝑉𝑡; 𝑡 ≥ 0} can be called Variance 

Gamma process, if for  θ ϵ R a σ > 0 the following is applicable  

  

 𝑉𝑡 = 𝜃𝐺𝑡 +  𝜎𝑊𝐺𝑡  1 

 

 

And its characteristic function is defined in terms of Brownian motion  𝑊𝑡 and gamma process 𝐺𝑡 with 

unit mean rate, μ = 1, as  

 

 

Φ𝑉𝑡(𝑢; 𝜎, 𝜈, 𝜃) = (1 − 𝑖𝑢𝜈𝜃 +
1

2
𝜎2𝑢2𝜈)

−
𝑡
𝜈

 2 

 

We can state that the Variance Gamma process begins in the zero, has stationary and independent 

increments, which are randomly sampled from the three parametric Variance Gamma distribution 

VG(𝜎, 𝜈, 𝜃). These parameters represent:  

(i)  𝜎 - volatility of the Brownian motion 

(ii) 𝜈 - variance of time shift, which is define by the subordinating gamma       process 

(iii) 𝜃 - drift of Brownian motion 

The kurtosis of the process is modelled by the parameter 𝜈, skewness by the parameter 𝜃 (MADAN, 

CARR, & CHANG, 1998(2)).  

2nd definition of Variance Gamma process – without Brownian component 

Let the Lévy measure of Variance Gamma process be  
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 𝜐𝑉𝐺(𝑑𝑥) =  {
𝐶 𝑒𝑥𝑝(𝐺𝑥)|𝑥|−1 𝑑𝑥

𝐶 𝑒𝑥𝑝(−𝑀𝑥)𝑥−1 𝑑𝑥
𝑥 < 0
𝑥 > 0

 3 

where  

 

 

 

 𝐶 = 𝑡/ 𝜈 > 0 

𝐺 = (√
1

4
𝜃2𝜈2 +

1

2
𝜎2𝜈2 −

1

2
𝜃𝜈)

−1

> 0 

𝑀 = (√
1

4
𝜃2𝜈2 +

1

2
𝜎2𝜈2 +

1

2
𝜃𝜈)

−1

> 0 

4 

Variance Gamma process can be then constructed as  

  

𝑉𝑡 = 𝐺𝑡
1 − 𝐺𝑡

2 
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Where for gamma process  𝐺𝑡
1 for  𝑡 ≥ 0 are its parameters  μ = C and  𝜈 = 𝑀, for the gamma process 

𝐺𝑡
2 for  𝑡 ≥ 0 are its parameters 𝜇 = 𝐶 and 𝜈 = 𝐺 (FIORANI, 2009), (APPLEBAUM, 2004).  

The characteristic function of the process under the second definition is  

 
Φ𝑉𝑡(𝑢;  𝐶, 𝐺,𝑀) = (

𝐺𝑀

𝐺𝑀 + (𝑀 − 𝐺)𝑖𝑢 + 𝑢2
)
𝐶

 6 

Variance Gamma proess has, on the finite interval, infinetely many jumps, though its trajectories have 

finite variance. Even though both definitions are relatively different, when the characteristic function 

from the 2nd definition is transformed and its parameters C, G and M are substituted with their 

respective equations, the same characteristic function of the process, as presented in the 1st definition, 

can be obtained. Then, it is proved that the Variance Gamma process can be constructed by both 

definitions 

 
1) Φ𝑉𝑡(𝑢;  𝐶, 𝐺,𝑀) =

𝐺𝑀

𝐺𝑀
(

1

1+(
1

𝐺
−
1

𝑀
)𝑖𝑢+

𝑢2

𝐺𝑀

)

𝐶

 

2) Φ𝑉𝑡(𝑢;  𝐶, 𝐺,𝑀) = (1 + (
1

𝐺
−
1

𝑀
) 𝑖𝑢 +  

1

𝐺𝑀
𝑢2)

−𝐶

 

7 
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3) Φ𝑉𝑡(𝑢;  𝐶, 𝐺,𝑀)

= (1 + ((√
1

4
𝜃2𝜈2 +

1

2
𝜎2𝜈2 −

1

2
𝜃𝜈) − (√

1

4
𝜃2𝜈2 +

1

2
𝜎2𝜈2 +

1

2
𝜃𝜈)) 𝑖𝑢

+  (√
1

4
𝜃2𝜈2 +

1

2
𝜎2𝜈2 −

1

2
𝜃𝜈)(√

1

4
𝜃2𝜈2 +

1

2
𝜎2𝜈2 +

1

2
𝜃𝜈)𝑢2)

−1  ⁄ 𝜈

 

 

In the following tables, the moments for both symmetric and non-symmetric Variance Gamma 

distribution based on 1st and 2nd definition. The moments are defined for the time of length equal to 

1. 

Table 1: Variance Gamma distribution – 1st definition 

Parameter 𝑽(𝝈, 𝝂, 𝜽) 𝑽(𝝈, 𝝂, 𝟎) 

E(X) 𝜃 0 

Variance 𝜎2 + 𝜈 𝜃2 𝜎2 

Skewness 𝜈𝜃 (3𝜎2 + 2𝜈𝜃2)/(𝜎2 + 𝜈 𝜃2)3/2 0 

Kurtosis 3(1 + 2𝑣 − 𝑣𝜎4 (𝜎2 + 𝜈 𝜃2)−2) 3(1 + 𝑣) 

Data source (SCHOUTENS, 2003) 

 

Table 2: Variance Gamma distribution – 2nd definition 

Parameter 𝑽(𝑪, 𝑮,𝑴) 𝐕(𝐂, 𝐆, 𝐆) 

E(X) 𝐶(𝐺 − 𝑀)/(𝑀𝐺) 0 

Variance 𝐶(𝐺2 +𝑀2)/(𝑀𝐺)2 2𝐶𝐺−2 

Skewness 2𝐶−1/2(𝐺3 −𝑀3)/(𝐺2 +𝑀2)3/2 0 

Kurtosis 3(1 + 2𝐶−1(𝐺4 +𝑀4)/ (𝐺2 +𝑀2)2) 3(1 + 𝐶−1) 

Data source (SCHOUTENS, 2003) 

Based on the parameters from the first definition, we can deduce following attribute of the Variance 

Gamma distribution. If we do not consider only one-time interval, we can write the kurtosis as  

 3 (1 +
𝑣

𝑡
) 8 

Furthermore, we can conclude, that with the rising t, the kurtosis will converge to the value of three, 

which is typical for the normal distribution. We can expect that the phenomenon of the higher kurtosis 

4) Φ𝑉𝑡(𝑢;  𝐶, 𝐺,𝑀) = (1 + (−𝜃𝜈)𝑖𝑢 +
1

2
𝜎2𝑢2𝜈)

−t  ⁄ 𝜈
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and probably the fat tails will be the most significant for the high frequency and daily log-returns, whilst 

the long-term log-returns will converge to the normal distribution. 

2.2.  Variance Gamma process and option pricing 

Dynamics of the price of the underlying asset may be modelled, using the Variance Gamma process, 

by replacing the Geometric Brownian motion process in the Black-Scholes model equation with the 

Variance Gamma process equation. So, we can write the following equation: 

  𝑆(𝑡) = 𝑆(0) exp(𝑚𝑡 + 𝑋(𝑡; 𝜎𝑝, 𝜈𝑝,  𝜃𝑝) + 𝜔𝑝𝑡) 

𝑑𝑃𝑡  = 𝑃𝑡(𝑒
𝑟𝑓𝑑𝑡 − 1) 

9 

Where 𝑋( . ) is the Variance Gamma process, 𝑚 is the expected value of the returns of the underlying 

asset (mostly the stock) given by the probability measure P, which is also indicated by the coefficient 

𝑝 at each variable. The variable 𝜔 constitutes a "correction factor" excluding the possibility of 

arbitrage. The variable 𝜔 can be derived from a characteristic function of Variance Gamma distribution   

mentioned above with the 𝑢 =
1

𝑖
, where we get  

 𝐸[𝑆(𝑡)] =  𝑆(0) exp(𝑚𝑡) ⟺ 𝐸 [exp(𝑋(𝑡))] = exp(−𝜔𝑠𝑡) 10 

and from the (KONIKOV & MADAN, 2002) 

 
𝜔𝑠 =

1

𝜈
𝑙𝑛 (1 − 𝜈𝜃 −

1

2
𝜎2𝜈) 11 

3.  Comparison of Variance Gamma model solutions 

In order to price the call option with the Variance Gamma model, we must be able to get the solution 

of the equation  

 𝐶(𝑆(0), 𝐾, 𝑡) = exp(−𝑟𝑡)𝐸(max[𝑆(𝑡) − 𝐾, 0]) 12 

 

where 𝑆(𝑡) is defined in the equation 9 from the previous section. In the following paragraphs, several 

possible approaches, how to price call option with the Variance Gamma model will be presented.  

3.1. Numerical solution of Variance Gamma PIDE 

Variance Gamma (VG) Partial Integro-Differential Equation (PIDE) describes the option price dynamics 

when the underlying returns are described by a Variance Gamma process. The VG PIDE can be solved 

by the commonly used numerical solution, Finite difference method. The VG PIDE will be solved by the 

IMEX scheme proposed by the (CONT & VOLTCHKOVA, A Finite Difference Scheme for Option Pricing 

in Jump Diffusion and Exponential Lévy Models, 2005). Firstly, it is neccesary to derive the PIDE of the 

Variance Gamma model, (CONT & VOLTCHKOVA, Integro-differential equations for option prices in 
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exponential Lévy models, 2005) deduce and prove that the option pricing PIDEs in the Lévy models are 

so-called „viscosity solutions2“ of the general valuation PIDE  

  

𝜕𝑉(𝑡, 𝑥)

𝜕𝑡
− 𝑟𝑉(𝑡, 𝑥) + (𝑟 −

1

2
𝜎2 − ∫ (𝑒𝑧 − 1 − 𝑧)𝜈(𝑑𝑧) 

𝑅

)
𝜕𝑉(𝑡, 𝑥)

𝜕𝑥

+
1

2
𝜎2
𝜕2𝑉(𝑡, 𝑥)

𝜕𝑥2
+ ∫ (𝑉(𝑡, 𝑥 + 𝑧)𝜈 − 𝑉(𝑡, 𝑥) − 𝑧

𝜕𝑉(𝑡, 𝑥)

𝜕𝑥 
) 𝜈(𝑑𝑧) = 0 

𝑅

 

13 

With the following boundary conditions for call option 

 𝑉(𝑡, 𝑥) = max(𝑒𝑥 − 𝐾, 0) 

𝑉(𝑡, 𝑥) =
(x → −∞)

0   

𝑉(𝑡, 𝑥) ~
(x → ∞)

𝑒𝑥 − 𝐾𝑒−𝑟(𝑇−𝑡) 

14 

And for put option 

 𝑉(𝑡, 𝑥) = 𝑚𝑎 𝑥  (𝐾 − 𝑒𝑥 , 0) 

𝑉(𝑡, 𝑥) =
(x → ∞)

0 

𝑉(𝑡, 𝑥) =
(x → −∞)

𝐾𝑒−𝑟(𝑇−𝑡)   

15 

 

For the VG model we can get the PIDE in the following form 

 𝜕𝑉(𝑡, 𝑥)

𝜕𝑡
+ (𝑟 −

1

2
𝜎𝜀
2 −𝜔𝑒)

𝜕𝑉(𝑡, 𝑥)

𝜕𝑥
+
1

2
𝜎2
𝜕2𝑉(𝑡, 𝑥)

𝜕𝑥2

+ ∫ 𝑉(𝑡, 𝑥 + 𝑧)𝜈(𝑑𝑧) = (𝜆𝜀 + 𝑟)𝑉(𝑡, 𝑥) 
|𝑧|≥𝜀

 
16 

Where 

 
𝜎𝜀
2 ∶= ∫ 𝑧2𝜈(𝑑𝑧) 

|𝑧|≥𝜀

 
 

∫ (𝑒𝑧 − 1)𝜈(𝑑𝑧) 
|𝑧|≥𝜀

 

𝜆𝜀 ∶= ∫ 𝜈(𝑑𝑧) 
|𝑧|≥𝜀

 

17 

 

 
2 For more detailed information see for example (KATZOURAKIS, 2014) 
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And Lévy measure is equal to 

 

𝜈(𝑑𝑧)  =   
𝑒
𝜃𝑧
𝜎2

𝜅|𝑧|
exp

(

 −
√2
𝜅 +

𝜃2

𝜎2

𝜎
 |𝑧|

)

 𝑑𝑧
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From the (CONT & VOLTCHKOVA, A Finite Difference Scheme for Option Pricing in Jump Diffusion and 

Exponential Lévy Models, 2005) we use the IMEX scheme described in the following paragraph, where 

the differential part of the equation will be solved with the implicit method and integral part of the 

equation with the explicit method. With the explicit method for the integral part, we are not forced to 

calculate the inverse matrix to so called „Jump matrix“ described further in the text. Integral part of 

the scheme can be also calculated with the Fast Fourier Transformation discribed further as well.  

The Variance Gamma process has infinite activity, which means that if the step size converges to an 

infinitesimal value, then conversely the number of new jumps will converge to infinity 𝜆

∶= ∫ 𝜈(𝑧)  =  ∞ 
∞

−∞
. It is necessary to exclude the interval − 𝜀 <  𝑧 <  𝜀, which will result in the 

finiteness of the above-mentioned parameters. Furthermore, for any  0 < 𝐾1 < 𝐾2 we select values 

𝑩𝟏 and 𝑩𝟐 such, that it is ensured  

 
[−𝐵1, 𝐵2] = [(−𝐾1 −

1

2
)Δ𝑥, (𝐾2 +

1

2
)  Δ𝑥]

 19 

Where we are interested in this linear space [0, 𝑇]  × [𝐴1 − 𝐵1, 𝐴2 + 𝐵2].  

The next step is to discretize the integral from the PIDE equation 

 

∫ 𝑉(𝑡, 𝑥 + 𝑧)𝜈(𝑑𝑧) 
𝐵2

−𝐵1

≈ ∑ 𝑣𝑘

𝐾2

𝑘 =−𝐾1 

𝑉𝑖+𝑘
𝑛

 20 

where  

 

𝑣𝑘 = ∑ 𝜈(𝑑𝑧)

(𝑘+
1
2
)∆𝑥

(𝑘−
1
2
)∆𝑥

,          𝑝𝑟𝑜 −𝐾1 < 𝑘 < 𝐾2 21 

Let 𝜆̂ =  ∑ 𝑣𝑘
𝐾2
𝑘 =−𝐾1 

, then for high values of 𝑩𝟏and 𝑩𝟐, parameter 𝜆 is appropriate approximation of 

𝜆, because the following applies 

 

𝜆 =  lim
𝐵1,𝐵2→∞

𝜆̂ = lim
𝐵1,𝐵2→∞

∑𝜈(𝑑𝑧)

𝐵2

𝐵1
 

22 

And the final discretization of VG PIDE with the IMEX scheme is  
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 𝑉𝑖
𝑛+1 − 𝑉𝑖

𝑛

Δ𝑡
+ (𝑟 −

1

2
𝜎𝜀
2 −𝜔𝑒)

𝑉𝑖+1
𝑛 − 𝑉𝑖−1

𝑛

2Δ𝑥
+ 
1

2
𝜎2
𝑉𝑖+1
𝑛 + 𝑉𝑖−1

𝑛 − 2𝑉𝑖
𝑛

Δ𝑥2

− (𝜆𝜀 + 𝑟)𝑉𝑖
𝑛 + ∑ 𝑣𝑘

𝐾2

𝑘 =−𝐾1 

𝑉𝑖+𝑘
𝑛+1 = 0

 

23 

 

Rearranged as  

 𝑉𝑖
𝑛+1̃

𝑉𝑖
𝑛+1 +  Δ𝑡 ∑ 𝑣𝑘

𝐾2

𝑘 =−𝐾1 

𝑉𝑖+𝑘
𝑛+1

⏞              
= 𝑉𝑖

𝑛 (1 + (𝜆̂ + 𝑟)Δ𝑡 +
𝜎2Δ𝑡

Δ𝑥2
) 

+ 𝑉𝑖+1
𝑛 (−(𝑟 −

1

2
𝜎2 − 𝜔̂)

Δ𝑡

2Δ𝑥
+
1

2

𝜎2Δ𝑡

Δ𝑥2
) +  𝑉𝑖−1

𝑛 ((𝑟 −
1

2
𝜎2 − 𝜔̂)

Δ𝑡

2Δ𝑥
+
1

2

𝜎2Δ𝑡

Δ𝑥2
)
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And when the brackets are further parametrized then 

 𝑉𝑖
𝑛+1̃ = 𝑎𝑉𝑖

𝑛 + 𝑏𝑉𝑖+1
𝑛 + 𝑐𝑉𝑖−1

𝑛

 25 

Finally, we can solve the system 𝑉𝑖
𝑛 for ∀ 𝑖 1 ≤ 𝑖 ≤ 𝑀 − 1 

a) With the jump matrix as  

 

{
𝑉𝑖
𝑛+1̃ = 𝑉𝑖+1

𝑛 + Δ𝑡 𝒥 𝑉𝑛+1

𝑉𝑛 = 𝒟−1 ( 𝑉𝑖
𝑛+1̃ − 𝐵)                 

𝑓𝑜𝑟  ∀ 𝑖 1 ≤ 𝑖 ≤ 𝑀 − 1
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With 𝒥 being a jump matrix with the Lévy measure vector beginning in the all elements on the main 

diagonal 

With example of Lévy measure  

 

(

 
 

7.29 ⋅ 10 − 4
0
0
0

3.34 ⋅ 10 − 8)
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and example of 𝒥 

 

 

(

  
 

7.29⋅ 10 − 4 0 0 0 3.34 ⋅ 10 − 8 0 0 0 0 0
0 7.29⋅ 10 − 4 0 0 0 3.34 ⋅ 10 − 8 0 0 0 0
0 0 7.29⋅ 10 − 4 0 0 0 3.34 ⋅ 10 − 8 0 0 0
0 0 0 7.29⋅ 10 − 4 0 0 0 3.34 ⋅ 10 − 8 0 0
0 0 0 0 7.29⋅ 10 − 4 0 0 0 3.34 ⋅ 10 − 8 0
0 0 0 0 0 7.29⋅ 10 − 4 0 0 0 3.34 ⋅ 10 − 8)
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Lévy measure vector is obtained as a solution of the ∫ 𝜈(𝑑𝑧)
𝑥2

𝑥1
, where 𝑥1 and 𝑥2 are divisions of the 

interval 

 

(

 
 
−(

𝑅𝑜𝑢𝑛𝑑𝑑𝑜𝑤𝑛(3 ∗ 𝑠𝑡𝑑𝑉𝐺)

∆𝑥
+ 1 + 0.5)∆𝑥,

(
𝑅𝑜𝑢𝑛𝑑𝑑𝑜𝑤𝑛(3 ∗ 𝑠𝑡𝑑𝑉𝐺)

∆𝑥
+ 1 + 0.5)∆𝑥

)
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With the division size equal to 2 ∗ (
𝑅𝑜𝑢𝑛𝑑𝑑𝑜𝑤𝑛(3∗𝑠𝑡𝑑𝑉𝐺)

∆𝑥
+ 2) the inner three values are zero, as we 

excluded the interval − 𝜀 <  𝑧 <  𝜀 out of the solution space, in this case [− 𝜀, 𝜀] = [−1.5∆𝑥 ,1.5∆𝑥]   

b) With the FFT and convolution as  

 

{
 
 

 
 
𝑉𝑖
𝑛+1̃ = 𝑉𝑖+1

𝑛 + Δ𝑡 ∑ 𝑣𝑘

𝐾2

𝑘 =−𝐾1 

𝑉𝑖+𝑘
𝑛+1

𝑉𝑛 = 𝒟−1 ( 𝑉𝑖
𝑛+1̃ − 𝐵)                  

𝑓𝑜𝑟 ∀ 𝑖 1 ≤ 𝑖 ≤ 𝑀 − 1
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with 𝒟 being a triangular matrix of coefficient 𝑎, 𝑏, 𝑐 with boundary conditions  

 
𝐵 = (𝑎𝑉0

𝑛, 0, … , 0, 𝑐𝑉𝑀
𝑛)
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3.2. Analytical solutions of Variance Gamma equation 

The analytical solutions for the Variance Gamma model equation can be found in the papers from 

(MADAN, CARR, & CHANG, 1998(2)) and from (MILNE & MADAN, 2008). While (MADAN, CARR, & 

CHANG, 1998(2)) propose that the price of call option can be obtained from the following equation 

 𝐶(𝑆(0), 𝐾, 𝑡)

=   𝑆(0) Ψ [𝑑√
1 − 𝑐1
𝑣

, (𝜍𝑠 + 𝑠)√(
1 − 𝑐1
𝑣

)
−1

,
𝑡

𝑣
 ]

+ −𝐾 exp(−𝑟𝑡) Ψ [𝑑√
1 − 𝑐2
𝑣

, (𝜍𝑠 + 𝑠)√(
1 − 𝑐2
𝑣

)
−1

,
𝑡

𝑣
]
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Where Ψ(α, β, γ) is function defined on the basis of Bessel function of second order and degenerated 

hypergeometric function of two variables which can be obtained as solution of the following integral 

 
Ψ(α, β, γ) =  ∫ 𝑁 (

α

√𝑥
+ β √𝑥) 

𝑥𝛾−1 𝑒−𝑥

Γ(𝛾)

+∞

0

 𝑑𝑥
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Solution of the integral and more detailed information about the Bessel functions can be found in 

(GRADŠTEJN, RYŽIK, & JEFFREY, 2007). 

The second solution proposed by (MILNE & MADAN, 2008) can be expressed as  

 𝐶(𝑔)

=  𝑆(0) (1 −
𝑣(𝜍𝑠 + 𝑠)2

2
)

𝑡
𝑣

exp(
𝑔(𝜍𝑠 + 𝑠)2

2
) ∗ 𝑁 [

𝑑

√𝑔
+ (𝜍𝑠 + 𝑠)√𝑔]

+ −𝐾 exp(−𝑟𝑡) [(1 −
𝑣(𝜍𝑠)2

2
)

𝑡
𝑣

] exp (
𝑔(𝜍𝑠)2

2
) ∗ 𝑁 (

𝑑

√𝑔
+ (𝜍𝑠)√𝑔) 
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where 𝑁( . ) is cumulative distribution function of the normal distribution and variables 𝑑, 𝜍 and 𝑠 are 

defined as  

 
𝜍 =  −

𝜃

𝜎2 

𝑠 =
𝜎

√1 +
(
𝜃
𝜎
)
2

𝑣

2
 

 

𝑑 =
1

𝑠
{ln [

𝑆(0)

𝐾
] + 𝑟𝑡 +

𝑡

𝑣
ln [
1 − 𝑐1
1 − 𝑐2

]}
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and 𝑐1, 𝑐2 are equal to 

 
𝑐1 = 

𝑣(𝜍𝑠 + 𝑠)2

2  

𝑐2 = 
𝑣(𝜍𝑠)2

2
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Price of the put option can be obtained with the put-call parity principle. 

3.3. Monte Carlo simulation 

Monte Carlo simulation solution is based on the simulation of high number of the Variance Gamma 

process trajectories, where the increments are originating from the three parametric Variance Gamma 
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distribution. The algorithm in the R Studio software was constructed according to the following 

scheme: 

 

Source: (FU, JARROW, YEN, ELLIOTT, & ed., 2007) 

3.4. Fast Fourier Transform 

Fourier Transform is mathematical method, which has wide application across the full spectrum of 

scientific activity, especially in the mathematics and physics, but in the most recent years also in 

biology or finance. The basic idea of this method, regarding the calculation of the option price, is that 

when applied on the probability density function, we get the characteristic function. With the Inverse 

Fourier Transform, we can perform a reverse operation and from the characteristic function obtain a 

probability density function. 

Fourier and Inverse Fourier Transform can be written as  

 
𝑆(𝜐) =  ∫  𝑠(𝑡) 𝑒−2𝜋𝑖𝜐𝑡𝑑𝑡

∞

−∞
 

37 

 

 

i. Define input parameters S, K, N, r, T, 𝜃, 𝜈 and 𝜎 

where S denotes the price of the asset, K strike price of the asset, N is the number of 

simulated trajectories, r is the interest rate used for the discounting, T is the time and 𝜃, 𝜈 

and 𝜎 are the parameters of Variance Gamma distribution. 

ii. Calculate auxiliary variables 𝜚 a 𝑤, G and Norm as 

𝜚 =
1

𝜈
 

𝑤 = −
log (1 − 𝜃 ∗ 𝜈 −

𝜈
2
∗ 𝜎2)

𝜈
, 

𝐺 ~ 𝑁 ∗
𝑁 ∗ 𝑅𝑎𝑛𝑑𝐺𝑎𝑚𝑚𝑎𝐷𝑖𝑠𝑡(𝑠ℎ𝑎𝑝𝑒 = 𝜚 ∗ 𝑇 )

𝜚
 

          𝑁𝑜𝑟𝑚  ~ 𝑁 ∗ 𝑅𝑎𝑛𝑑𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡(0, 1 )     

 

Where 𝑁 ∗ 𝑅𝑎𝑛𝑑𝑁𝑜𝑟𝑚𝐷𝑖𝑠𝑡 and 𝑁 ∗ 𝑅𝑎𝑛𝑑𝐺𝑎𝑚𝑚𝑎𝐷𝑖𝑠𝑡 are vectors of N randomly 

sampled values from Normal and Gamma distributions. Finally, 𝑤 is martingale correction 

term. 

iii. Calculate VG random vector as 

                 𝑉𝐺𝑅𝑉 = 𝜃 ∗ 𝐺 +  𝜎 ∗ √𝐺 ∗ 𝑁𝑜𝑟𝑚 

and vector S in time T 

             𝑆𝑇 = 𝑆0 ∗ exp((𝑟 − 𝑤) ∗ 𝑇 + 𝑉𝐺𝑅𝑉) 

iv. Calculate the final option value as 

𝑐𝑎𝑙𝑙 = exp(−𝑟 ∗ 𝑇) ∗ 𝑚𝑒𝑎𝑛(max(𝑆𝑇 − 𝐾, 0))  

𝑝𝑢𝑡 = exp(−𝑟 ∗ 𝑇) ∗ 𝑚𝑒𝑎𝑛(max(𝐾 − 𝑆𝑇 , 0)) 
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and  

 
ℱ−1[𝑆(𝜐)] = 𝑠(𝑡)  =  ∫  𝑆(𝜐) 𝑒2𝜋𝑖𝜐𝑡𝑑𝜐

∞

−∞
 38 

The Fourier Transform can take both continuous and discrete forms, where we are specifically 

interested in the discrete form (MATSUDA, 2004).  

Even thought the Fourier Transformation appears to be elegant tool solving wide range of 

mathematical issues, in practical use, it encounters application limitations. First, we may encounter an 

integral without the analytical solution. Second, computer algorithms and software often use discrete 

alternatives of the continuous functions. Both limitations explain why we are interested especially in 

the Discrete Fourier Transform, which can be written as 

 
𝑆(𝜐) = ∆𝑡∑ 𝑠(𝑡𝑘)𝑒

−2𝜋𝑖𝜐𝑡𝑘

𝑁−1

𝑘=0
 39 

where 𝑡𝑘 = 𝑘∆𝑡  (SCHMELZLE, 2010). 

In order to substitute integral with sum, we can use widely known Newton-Cotes equations, specifically 

the Simpson method.  

In general, the computational complexity of the discrete Fourier Transform with the direct methods is 

𝒪(𝑁2), which could cause this method would not be reasonable to use in the practical application. 

However, we can use so called Fast Fourier Transform family of algorithms, specifically Cooley–Tukey 

algorithm. This algorithm is based on the paradigm of “Divide and Conquer”, where we can lower the 

computational complexity from 𝒪(𝑁2) to 𝒪(𝑁 𝑙𝑜𝑔𝑁), which speed up the calculation enormously 

(MALKIN, 2019) (BEKELE, 2016). For detailed description of the algorithm with mathematical proofs 

see (OSGOOD, 2007). Price of the call option calculated with the Fast Fourier Transform is then 

according to the  (CARR & MADAN, Option valuation using the fast Fourier transform, 1999) using the 

Simpson method for numerical integration  

 
𝐶𝑇(𝑘) ≈

𝑒𝑥𝑝(−𝛼𝑘𝑢)

2𝜋
∑𝑒−𝑖

2𝜋
𝑁
(𝑢−1)(𝑗−1)𝑒𝑖𝑏𝑣𝑗𝜓𝑇(𝑣𝑗)

𝜂

3
[3 + (−1)𝑗 − 𝛿𝑗−1] 

𝑁

𝑗=1
 40 

 

where δn is Kronecker’s delta, which is the function that takes values 1 for 𝑛 =  1 and for any other 

value is equal to zero. 

Regarding the equation 9 of the Variance Gamma model  

 𝑆(𝑡) = 𝑆(0)ex p(𝑚𝑡 + 𝑋(𝑡; 𝜎𝑝, 𝜈𝑝,  𝜃𝑝) + 𝜔𝑝𝑡) 

𝜔𝑠 =
1

𝜈
𝑙𝑛 (1 − 𝜈𝜃 −

1

2
𝜎2𝜈)

 

41 

and characteristic function of the Variance Gamma process  

 

Φ𝑉𝑡(𝑢; 𝜎, 𝜈, 𝜃) = (1 − 𝑖𝑢𝜈𝜃 +
1

2
𝜎2𝑢2𝜈)

−
1
𝜈

 
42 
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We can obtain characteristic function for the Variance Gamma model  

 

𝜓𝑇(𝑣𝑗) = ∅(𝑢) = exp[ln(𝑆0) + (𝑟 + 𝜔)𝑇] (1 − 𝑖𝑢𝜈𝜃 +
1

2
𝜎2𝑢2𝜈)

−
𝑇
𝜈
) 
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with which we want to substitute 𝜓𝑇(𝑣𝑗) into the call option equation 40 mentioned above. After the 

substitution, we are able to calculate the call option price using the Fast Fourier Transform. 

3.5. Effectiveness and accuracy of each solution 

The previously mentioned solutions were transferred into the algorithms in the R Studio software and 

effectiveness and accuracy of the solutions were compared. Testing of the individual algorithms was 

performed on the calculation of the price of the call option for the underlying asset, which price 

trajectory follows Variance Gamma process with these parameters: 

S 100 

K 101 

r 0,1 

T 0,25 

𝜃 -0,1436 

𝑣 0,3 

𝜎 0,12136 

Other additional parameters necessary specifically for each method are listed in the table below along 

with the calculated price and time needed for the algorithm to converge. 

Table 3: Algorithms comparison 

Algorithm Price of the call option 
Price calculation time in 

seconds 
Additional algorithm 

parameters 

PIDE 1 – Convolution 3,466584 6,54 

Number of time steps 
and space steps were set 
to 1000 for both 
parameters 

PIDE 1 – Jump matrix 3,466584 6,44 

Number of time steps 
and space steps were set 
to 1000 for both 
parameters 

PIDE 2 – Jump Matrix 
3,468454 60,66 

Number of time steps 
and space steps were set 
to 2000 for both 
parameters 

PIDE 3 – Jump Matrix 
3,470914 872,56 

Number of time steps 
and space steps were set 
to 5000 for both 
parameters 

Analytical solution – Bessel 
Function 

3,28544 0,12 
Gauss-Kronrod (G20, 
K41) method is used for 
the integral solution 

Analytical solution – Normal 
distribution 

3,291678 0,43 
Gauss-Kronrod (G20, 
K41) method is used for 
the integral solution 
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Monte Carlo simulation 
3,474611 3,36 Number of simulated 

trajectories – 10 000 000 

Fast Fourier Transform 3,474164 0,2 
Gauss-Kronrod (G20, 
K41) method is used for 
the integral solution 

   Data source: Own calculations 

From the table above we can see that PIDE solution via Finite element method does not provide both 

accurate and at the same time computationally effective results, as the algorithm converges to the FFT 

and Monte Carlo results with the increasing steps of the calculation very slowly. Both analytical 

methods are very fast to calculate but show significantly different result than the other methods. Even 

after multiple revisions of the code and the mathematical theory, author was not able to get the same 

solutions with the analytical formulas as with the other methods. As both analytical solutions are based 

on the similar mathematical theory, contrary to other solutions which fundamentals are different, the 

analytical solutions were assessed to be less accurate. We can see that the Monte Carlo method and 

FFT method converge to similar results, which are a little higher than solution of PIDE, which increases 

with the increased number of steps. It is possible to state that the most precise and computationally 

efficient method is, according to the expectation, Fast Fourier Transform. Numerical solution of PIDE 

with convolution should be, according to the theory, faster than the solution with Jump Matrix. 

However, in the R Studio software, convolution function is not implemented efficiently (cannot handle 

sparse matrix properly), contrary to Python or Matlab software, where the convolution method is 

almost ten times faster. Based on the Table 3 results, Fast Fourier Transform will be used for the 

calculation of the option price further in the paper. 

4. Data and methods 

For verification of the shape of the empirical probability distributions of the underlying asset’s 

logarithmic returns, historical returns of the selected stocks are used. The stocks were on purpose 

selected from various industries, so as to avoid possible bias present in a specific industry. As the 

estimation technique, Maximum Likelihood estimation (MLE) method will be used. Following three 

optimization methods for the MLE will be used to find the most proper parameters describing the 

empirical distribution: 

• Conjugate gradient method 3 

• Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm4 

• Nelder-Mead algorithm5 

As in the real-world pricing process, implied volatility is used to price the option rather than the 

historical one, the implied coefficients for both the BS and VG models will be calculated. The underlying 

data for the implied coefficients calculation will be the market prices of the options for the selected 

underlying assets. Each options chain defined as the dataset of options with the same underlying asset 

and maturity and different strike prices will be divided into training and testing set and afterwards, the 

performance of both models will be compared. Criteria selected for the comparison of the distributions 

will be Bayesian Information Criterion, comparison of estimated likelihoods and error rate of the model 

via RMSE metric on train and test dataset. Another significant phenomenon in option pricing is called 

volatility smile. In general, implied volatility increases as options become more In-the-money or Out-

 
3 More detailed information (SHEWCHUK, 1994) 
4 More detailed information (DAI, 2013) 
5 More detailed information (MATHEWS & KURTIS, 2004) 
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of-the money. It is not uncommon for the implied volatility of OTM / ITM options to be more than ten 

times higher than the volatility of an At-the-money option. This issue is generally addressed using 

models that also model volatility. These are models with stochastic or parametric volatility. However, 

it is possible that at least part of this effect may be caused by the inappropriate use of the BS model 

and could be at least partially compensated using the VG model. The elimination of the volatility smile 

effect will be tested by the estimation of the natural spline regression model, where there will be 

tested the relationship between the moneyness of the option and the pricing error rate of both 

models.  

5.  Results and Discussion 

5.1. Historical log return distributions  

There were eleven companies selected to avoid possible bias of the results, due to the specificity of 

one particular industry. The list of the selected companies may be found in the Appendix 1 of this 

paper. For each company, historical logarithmic returns with daily, weekly, and monthly frequency 

beginning with 01/2010 and ending with 01/2020 were calculated. Afterwards, with the above-

mentioned estimation method and comparison criteria, the selected probability distributions were 

compared. In order to clearly describe the whole comparison process, the Daimler AG returns analysis 

will be disassembled in detail. During this analysis, we will try to prove, that the VG distribution fits the 

empirical one better. Also, we will try to prove, that the kurtosis of the distribution will decrease with 

the decreasing frequency of the logarithmic returns. The decreasing in the kurtosis is one of the 

Variance Gamma process property described above.   

Analysis of the daily logarithmic returns 

Figure 1: Daimler log-returns graph - daily 

 

From the Fig. 1 - the graph of the daily logarithmic returns of the Daimler company, it can be clearly 

seen, that the estimated VG distribution significantly differs from the Normal distribution and that the 

empirical distribution has higher kurtosis than Normal distribution expects and is able to reflect.  
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Table 4:  Daily historical log-returns statistics 

Algorithm Mean Sigma Theta Kappa LL BIC 

Normal BFGS 0.000 0.019 NA NA 6331.797 -12647.92 

VG 

BFGS 0.000 0.019 0.000 0.967 6628.648 -13225.95 

VG  

CG 0.000 0.019 0.000 1.017 6628.317 -13225.28 

VG 

Nelder-Mead 0.000 0.019 
0.000 1.229 6621.733 -13212.11 

Skewness  
Empirical 

Kurtosis  
Empirical 

-0.049 19.548 

Data source: own calculations 

If we examine the estimated statistics of the fitted distributions, we can see that VG distribution fitted 

the empirical one more precisely, measured both by the Log – Likelihood and BIC.  We can state that 

the empirical distribution is neither negatively nor positively skewed, as the Theta of the VG is zero. 

However, the Kappa is significantly higher than 0, which would VG distribution had, if it matched the 

Normal distribution (as formula for kurtosis is 3(1 + 𝜅) and normal distribution has kurtosis equal to 

3). 

Analysis of the weekly logarithmic returns 

Fig. 2 shows the same as Fig. 1 with only difference, that there are weekly logarithmic returns. The 

kurtosis of the empirical distribution is not as different from the normal as in the case of daily log-

returns. This matches the theory behind the VG model. Also, the VG distribution seems to be negatively 

skewed. 

Figure 2: Daimler log-returns graph - weekly 
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The fitted distribution statistics confirm that the kurtosis is lower than for daily log-returns, but still 

significantly above the kurtosis of Normal distribution. In this case, the Theta parameter shows the 

existence of negative skewness. Again, both Log-Likelihood and BIC prefer the VG distribution. 

Contrary to the previous estimation, for the weekly log-returns, relatively different estimates can be 

seen for the VG distribution with the above-mentioned algorithms. The reason is that the algorithms 

had less observations and due to the variant methods behind, the algorithms converged to different 

coefficient values. 

Table 5: Weekly historical log-returns statistics 

Algorithm Mean Sigma Theta Kappa LL BIC 

Normal BFGS 0.000 0.046 NA NA 865.613 -1714.08 

VG 

BFGS 0.000 0.045 -0.008 0.678 897.776 -1761.27 

VG  

CG 0.000 0.047 -0.009 1.003 895.352 -1756.42 

VG 

Nelder-Mead 0.000 0.045 
-0.005 0.672 897.287 -1760.29 

Skewness  
Empirical 

Kurtosis  
Empirical 

-0.435 8.160 

Data source: own calculations 

Analysis of the monthly logarithmic returns 

The last examined logarithmic returns were returns with monthly frequency. The Fig.3 shows that the 

differences in the optimization algorithms are significant and for example BFGS algorithm may not 

describe the empirical distribution precisely. Furthermore, the kurtosis is again lower than in the 

previous cases, proving the decreasing kurtosis assumption.  



 

21 
 

Figure 3: Daimler log-returns graph - monthly 

 

Finally, even though the Log-Likelihood in the Tab. 6 prefers the VG distribution with parameters 

estimated by the Nelder-Mead algorithm, the BIC prefers the Normal distribution, as the difference 

between the VG a Normal distribution is not surpassing the BIC penalization for the additional 

parameters. The Kappa for the Nelder-Mead algorithm is converging to the zero, which indicates the 

similarity to the Normal distribution. 

Table 6: Monthly historical log-returns statistics 

Algorithm Mean Sigma Theta Kappa LL BIC 

Normal BFGS 0.003 0.087 
NA NA 121.241 -228.28 

VG 

BFGS 0.051 0.107 -0.058 2.085 
106.412 -184.43 

VG  

CG 0.008 0.090 
-0.005 0.803 122.143 -215.89 

VG 

Nelder-Mead -0.016 0.086 
0.020 0.345 122.727 -217.06 

Skewness  

Empirical 

Kurtosis  

Empirical 

-0.530 4.476 

Data source: own calculations 

Analysis of all datasets 

As the single company analysis may bias our results, in the following tables, all the datasets of the 

historical log-returns are analysed in the same way as the previous Daimler returns.  

In Tab. 7 we can see that the Normal distribution is preferred only in two cases measured by the LL 

and according to the expectations only for the Monthly log-returns. 
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Table 7: Total historical log-returns statistics – LL 

 

 

 

 

 

In Tab. 8 BIC is taken as the decision criteria and filters more historical returns in favour of the Normal 

distribution. But again, mainly datasets with the lowest frequency.  

Table 8: Total historical log-returns statistics – BIC 

Logarithmic 

returns 
VG Normal 

Total 27 6 

Daily 11 x 

Weekly 10 1 

Monthly 6 5 

Finally, in the Tab. 9 – the average Skewness and Kurtosis of the empirical distributions, calculated as 

the third and fourth standardized moments, are shown. In average, empirical distributions are slightly 

negatively skewed, but more importantly have significantly higher Kurtosis with increasing frequency 

of the log-returns, which indicates fat-tail distribution, where VG distribution prevails over Normal 

distribution. 

Table 9: Total historical log-returns statistics – Skewness and Kurtosis 

Logarithmic 

returns 
Skewness Kurtosis 

Daily -0,32 11,48 

Weekly -0,72 9,64 

Monthly -0,53 5,05 

Data source: Yahoo finance 

5.2.  Implied coefficients estimation 

In the previous chapter, historical returns were examined. In reality, implied volatility is used instead 

of historical one and so the pricing efficiency of both models should be tested on the observed market 

prices of the listed options. 

Implied coefficients were calculated from the options chains with options maturing within a month, 

six months, and a year. The option prices were obtained as of single snapshot on 22nd October 2020. 

For each option chain, where options differ by the Strike price and have identical underlying asset and 

maturity, single vector of implied coefficients was estimated for the VG model as well as single implied 

volatility was estimated for the BS model. The calibration of the implied coefficients for both models 

was done via minimizing the Root Mean Square Error (RMSE) metric  

Logarithmic 

returns 
VG Normal 

Total 31 2 

Daily 11 x 

Weekly 11 x 

Monthly 9 2 
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min

(

 √∑
𝐶𝑖
𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑖

𝑚𝑎𝑟𝑘𝑒𝑡

𝑁

𝑁

𝑖=1
)
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where N is the number of options in the selected options chain and C is the price of the call option. 

The BFGS algorithm described above was used for the optimization. Calculation of model price 𝐶𝑖
𝑚𝑜𝑑𝑒𝑙 

is done with the FFT algorithm for the VG model. Price 𝐶𝑖
𝑚𝑜𝑑𝑒𝑙 within the BS model was obtained via 

the well-known formula  

  

 𝐶 = 𝑆𝑡𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑡𝑁(𝑑2) 

𝒅1 =
ln (

𝑆𝑡
𝐾) +

(𝑟 +
𝜎2

2
)

𝜎√𝑡
 

𝒅2 = 𝒅1 − 𝜎√𝑡 
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Also, the option chains were separated randomly into the training and testing parts, to evaluate the 

performance of the models on the unobserved data. The ratio for the training and testing parts were 

70:30.  

Number of individual options in each of the option chain can be seen in the Appendix 1, within the 

Option chains section. The implied coefficients were estimated under the risk-neutral probability 

measure. As all the underlying assets are denominated in the EUR currency, Euro area government 

zero coupon yield curve, published by the ECB, was used as the risk-free rate. 

In the Tab.10 the performance of the models measured by the RMSE separately for the training and 

testing datasets can be seen. Where TRUE, the Variance Gamma model priced an option chain with 

lower RMSE. We are assuming that lower RMSE implies more precise fitting of the market option 

prices. Clearly, the VG model had lower error rate especially on the testing sample. 

Table 10: RMSE of fitted models 

 RMSE - train 

 True False 

RMSE - 

test 

True 26 3 

False 1 6 

Data source: Eurex  

5.3.  Relation between the Moneyness and Relative pricing error 

Finally, the relation between the root square relative pricing error and the Moneyness of the option 

was tested. The aim of this analysis was to test, whether the VG model can, at least partially, eliminate 

the Volatility smile effect. If the R2 of the model would converge to zero, or the coefficients of the 
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Moneyness would be insignificant, the VG model would most likely be able to handle above mentioned 

problem. The Moneyness for each option is defined as  

 
𝑀𝑁 = log (

𝑆

𝐾
) 
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and root square relative pricing error as  

  

 

𝑅𝑆𝑅𝑃𝐸𝑖 = √(
𝐶𝑖
𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑖

𝑚𝑎𝑟𝑘𝑒𝑡

𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡

)

2
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For each option 𝑖 in the above defined option chains and estimated implied coefficients from the 

previous chapter, the root square relative pricing error was calculated. Afterwards, for each option 

chain, the natural spline regression model (NS RM) was estimated in order to estimate the relationship 

between the 𝑀𝑁 and 𝑅𝑆𝑅𝑃𝐸.  

As we expect that the relationship between the 𝑀𝑁 and 𝑅𝑆𝑅𝑃𝐸 will be similar for the option chains 

with the same maturity, Adj. R2 from the separate NS RM was averaged for all the maturities and also 

for all the option chains, so the total comparison can be made. In the Tab.11 the average adjusted 

coefficients of determination of the fitted natural spline regression model with two degrees of 

freedom are reported. The significance of the Moneyness coefficients is not reported, as it was always 

significant on the 5 % confidence interval. The VG model pricing error was however less dependent on 

the moneyness than the BS model as the Adj. R2 is in total average 19 % lower. For the option chains 

with yearly maturity, the Adj. R2 difference between the models is even more significant. For these 

option chains, the difference in the average Adj. R2 was more than 27% in total, favouring the VG 

model. 

Table 11: R2 of the fitted models 

 BS model VG model Difference 

Adj.  R2 Total 76,2% 57,2% -19,1% 

Adj.  R2 Month 70,9% 57,6% -13,3% 

Adj.  R2 Half Year 72,8% 56,4% -16,4% 

Adj.  R2 Year 85,5% 57,6% -27,9% 

Tab. 12 shows the average RSRPE of the models, where the averaging is done with the same logic as 

in the previous table. The VG model was able to lower the RSRPE by 10 % in comparison with the BS 

model. 

Table 12: RSRPE of the fitted models 

 BS model VG model Difference 

Total 30,11% 20,69% -9,42% 

Month 44,00% 37,61% -6,38% 

Half Year 28,59% 18,19% -10,40% 

Year 17,74% 6,26% -11,49% 
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Figures 4 and 5 show the RSRPE (Relative pricing error axis in the graphs) of VG and BS models for the 

Henkel AG & Co. option chain, where all the options are maturing in a month time. 

Figure 4: Henkel AG & Co. options pricing error of BS model 

 

Figure 5: Henkel AG & Co. options pricing error of VG model 

 

Figures 4 and 5 above illustrate, how the VG model was able to reduce the volatility smile phenomenon 

for the Henkel AG & Co. options with the one-month maturity. We can see that not only the variance 

of the RSRPE was reduced, but also that the fitted curve is flatter, and the errors are concentrated 

more around zero, below the 5 %, which can be considered as very accurate. Contrary to that, the BS 
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models pricing error surpass the 5 % level very often and the volatility smile effect can be clearly 

observed. 

6. Conclusion 

The aim of this paper was to propose appropriate solution of the Variance Gamma model for option 

pricing and compare the model with the Black-Scholes model.  

Based on the analysis of the proposed algorithms, the Fast Fourier transformation algorithm is deemed 

to be the most efficient one, measured by the accuracy and computational efficiency.  

Next, MLE method was used to fit Variance Gamma and Normal distributions to historical logarithmic 

returns with different frequency (daily, weekly, and monthly). This analysis proved the decreasing 

kurtosis assumption of the Variance Gamma. Also, the Variance Gamma distribution was preferred to 

Normal distribution, measured by the LL and BIC, in most cases. 

The third analysis used both models to price the option chains and the RMSE metric was used to 

compare both models. Again, the Variance Gamma models was the preferred one.  

Finally, both models were tested in relation to the Volatility smile phenomenon. The Variance Gamma 

model was able to reduce this phenomenon measured both by the Adj. R2 and average root square 

relative pricing error. 

As a result of the four performed analysis, the Variance Gamma model proved to be promising 

candidate, which can very precisely describe the leptokurtic financial distributions and partially 

eliminate the volatility smile effect phenomenon. On top of that, the Variance Gamma model does not 

require unrealistic assumptions as the Black-Scholes model and is more consistent with the financial 

theory. 
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8. Appendix: List of companies 

Historical returns 

Source for the historical returns data is Yahoo Finance server. 

Adidas 

Daimler 

JCDecaux SA 

E.ON 

Henkel AG & Co. KGaA 

KBC Group NV 

L'Oréal S.A. 

Siemens Healthineers AG 

Siemens Aktiengesellschaft 

Strabag SE 

Veolia Environnement S.A. 

Option chains 

Source for option chain data is Eurex server.  

Option chains snapshot is 22nd October 2020. Each item in the table below represents one option 

chain. 

Figure 6: Number of options in the option chain 

 Number of options in the option chain  

Underlying asset 
Monthly 

maturity 

Half-year 

maturity 
Yearly maturity 

Adidas 35 17 9 

Daimler 43 30 12 

KBC Group NV 41 23 17 

E.ON 30 13 10 

JCDecaux SA 34 15 11 

Deutsche Börse AG 35 17 10 

L'Oréal S.A. 15 19 10 

Strabag SE 18 16 10 

Siemens Healthineers AG 18 15 9 

Siemens Aktiengesellschaft 29 10 9 

Veolia Environnement S.A. 39 18 17 

Henkel AG & Co. KGaA 20 17 11 
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