
 
 

 
 

 

Return and volatility spillovers between 

Chinese and U.S. Clean Energy Related Stocks: 

Evidence from VAR-MGARCH estimations 

 

Karel Janda 

Ladislav Kristoufek 

Binyi Zhang 

 

FFA Working Paper 1/2022 

 
FACULTY OF FINANCE AND ACCOUNTING  



 

 

 

About: FFA Working Papers is an online publication series for research works by the faculty and 

students of the Faculty of Finance and Accounting, Prague University of Economics and Business, Czech 

Republic. Its aim is to provide a platform for fast dissemination, discussion, and feedback on 

preliminary research results before submission to regular refereed journals. The papers are peer-

reviewed but are not edited or formatted by the editors.  

Disclaimer: The views expressed in documents served by this site do not reflect the views of the Faculty 

of Finance and Accounting or any other Prague University of Economics and Business Faculties and 

Departments. They are the sole property of the respective authors. 

Copyright Notice: Although all papers published by the FFA WP series are available without charge, 

they are licensed for personal, academic, or educational use. All rights are reserved by the authors. 

Citations: All references to documents served by this site must be appropriately cited. 

Bibliographic information: 

Janda K., Kristoufek L., Zhang B. (2022). Return and volatility spillovers between Chinese and U.S. Clean 

Energy Related Stocks: Evidence from VAR-MGARCH estimations. FFA Working Paper 1/2022, FFA, 

Prague University of Economics and Business, Prague. 

 

This paper can be downloaded at: wp.ffu.vse.cz 

Contact e-mail: ffawp@vse.cz 

 

 

 

 

 

 

 

 

 

©  Faculty of Finance and Accounting, Prague University of Economics and Business, 2022 

Winston Churchill Sq. 1938/4, CZ-13067 Prague 3, Czech Republic, ffu.vse.cz   

http://wp.ffu.vse.cz/
mailto:ffawp@vse.cz


1 

Return and volatility spillovers between Chinese and 

U.S. Clean Energy Related Stocks: Evidence from 

VAR-MGARCH estimations 

Authors 

Karel Janda1,2 

Ladislav Kristoufek1 

Binyi Zhang1,3 

Abstract 

Objective of this paper is to empirically investigate the dynamic connectedness between oil prices and 

stock returns of clean energy related and technology companies in China and U.S. financial markets. 

Three different multivariate Generalised Autoregression Conditional Heteroscedasticity (VAR-

MGARCH) model specifications are used to investigate the return and volatility spillovers among series.  

By comparing these three models, we find that the VAR (1)-DCC (1,1) model with the skewed Student 

t distribution fits the data the best. The results of DCC estimation reveal that, on average, a $1 long 

position in Chinese clean energy companies in the Chinese financial market can be hedged for 18 cents 

with a short position in clean energy index in the U.S market. Our empirical findings provide investors 

and policymakers with the systematic understanding of spillover effects between China and U.S. clean 

energy stock markets. 

AMS/JEL classification: Q20, G11 

Keywords: Clean energy, Oil, Technology, Stock prices, VAR-MGARCH 

1. Introduction 

Developing renewable energy sources to either replace or enrich the existing energy supply portfolio 

remains a crucial strategy for countries to reduce coal dependency and therefore to reach the climate 

targets that the participating governments pledged under The Paris Agreement (Ščasný et al., 2015). 

The International Energy Agency (IEA) (2017) estimates that the global demand for renewable energy 

sources would rise from 9% in 2017 to 16% in 2040. Given the extraordinary process of industrialisation 
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and urbanisation over the past four decades, China has become the largest energy consumer and 

carbon emitter which has caused serious issues of environmental degradation (Zhang et al., 2015). 

According to the National Bureau of Statistics of China (2018), China’s total energy consumption 

between 1978 and 2017 increased from 147 million tons of standard coal equivalent (tsec) to 449 

million tsec, with an average of 7% annual growth rate. In response to the climate change, energy 

storage and environmental degradation, China proposed to change the economic structure from 

conventional manufacturing-driven to service-oriented structure based on a clean and low-carbon 

energy supply system (Song et al., 2018). Towards this goal, China released its 12th Five-Year Plan for 

National Strategic Emerging Industries in 2010 and listed the renewable energy sector as one of the 

leading industries for the country to achieve a sustainable low-carbon economy. Moreover, China has 

committed to peak its carbon dioxide emissions before 2030 and fulfil the ambitious goal of the carbon 

neutrality before 2060 (Fang et al., 2021; Shi et al., 2021). Consistent with this national ambition in 

climate environmental mitigation, by the end of 2018, clean energy sources accounted for 14.3% of 

China’s total energy consumption, the vast majority comes from wind, solar and hydroelectric sources 

(National Bureau of Statistics of China, 2018).   

Nevertheless, renewable energy development often requires sufficient and adequate public financial 

support as private sources are incapable of financing such a large project (Reboredo et al., 2017). Al 

Mamun et al. (2018) argue that the financial stress on funding a clean energy project could be 

alleviated by financial development, while Reboredo and Wen (2015) emphasise the important role of 

stock market in China’s clean energy development. Along with preferential policies and bullish markets 

for sustainable economic development, clean energy related stocks have been receiving 

unprecedented attention among investors in the Chinese financial market. Despite the remarkable 

growth in stock issuance volumes over the past decade, the overall market size of clean energy related 

stocks in China remains relatively nascent and it is substantially smaller than other sectors. Due to the 

uncertainties in clean energy commercialisation, stock investments in publicly traded clean energy 

companies are expected to be highly volatile (Henrique and Sadorsky, 2008). Given the presence of 

information asymmetries and immature trading mechanisms in China’s clean energy stock market, 

investors tend to make decisions blindly by simply following the general market and policy trends 

(Roboredo and Wen, 2015; Sun et al. 2019).  

As for the flourishing literature on clean energy related stocks, existing studies have identified the 

significant role of oil in affecting clean energy stock price dynamics (Reboredo, 2015; Bondia et al., 

2016). Although rising oil prices are widely accepted as one of the major factors for companies to 

substitute fossil fuel-based production with clean energy sources, Henrique and Sadorsky (2008) 

suggest that the impact of oil price movements on clean energy stock prices is limited and it is not as 

effective as technological shocks.  

In contrast, Kumar et al. (2012) report a significant positive relationship between oil prices and clean 

energy stock prices.  Given the considerations of structural breaks in the oil market, Managi and 

Okimoto (2013) and Bondia et al. (2016) study the causality between oil prices and clean energy stock 

prices and reveal significant evidence of unidirectional causality from oil prices to clean energy stock 

prices. Reboredo et al. (2017) document that the mean return dependences between oil prices and 

clean energy stock prices vary across different time horizons. For the period between 2009 and 2016, 

Reboredo and Ugolini (2018) demonstrate that oil prices were one of the significant contributors to 

the clean energy stock return movements in the U.S and the EU market. Likewise, following the 

frequency-domain spillover method proposed by Baruník and Křehlík (2018), Ferrer et al. (2018) and 

Naeem et al. (2020) explore how oil price shocks affect clean energy stocks and reveal a significant 

time-varying connectedness between oil prices and clean energy stocks. Moreover, both studies reach 

a consistent conclusion confirming that most of the connectedness is not persistent in the long-term. 
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Using a TVP-SV-VAR estimation approach, Zhang and Du (2017) indicate that the stock prices of oil and 

coal companies have significant impacts on the stock prices of Chinese clean energy companies.  Based 

on a set of firm level data, Foglia and Angelini (2020) reveal that there is a significant increase in the 

degree of volatility connection between crude oil and clean energy stock prices due to the COVID-19 

outbreak. Furthermore, Foglia and Angelini (2020) verify the role of the global COVID-19 outbreak as 

a trigger that stimulates investors to seek risk-adjusted return and therefore to modify their portfolio 

to reduce risks during periods of high uncertainties.  

Since innovations in clean energy sector are crucial for the future development and market expansion 

of the renewable energy sources, having technological breakthroughs can significantly promote 

investments in renewable energy (Popp et al., 2011; Samia et al., 2020; Zeqiraj et al., 2020; Zheng et 

al., 2021). Consequently, investors tend to view clean energy stocks as having a similar risk profile as 

the technological companies (Sadorsky, 2012; Zhang and Du, 2017; Ferrer et al., 2018; Sun et al., 2019). 

By applying a wavelet analysis, Samia et al. (2020) show that the stock returns of clean energy 

companies are heavily affected by shocks in technological companies. Zhang and Du (2017) find 

significant and persistent return spillovers between stock prices of clean energy companies and 

technology companies in China’s financial market. On the basis of daily closing prices from the U.S 

market, Ferrer et al. (2018) find a significant short-run co-movement relationship between clean 

energy stocks and technology stocks. More recently, Sun et al. (2019) use the impulse response 

functions to demonstrate a significant return linkage between the stock prices of China’s clean energy 

companies and technology companies. In addition to that, Sun et al. (2019) highlight that any 

unexpected shocks on technology stock prices in China’s financial market are expected to generate 

positive impacts on clean energy stock prices for at least eight periods.  

Another strand of the literature investigates the volatility transmissions among oil prices, clean energy 

stock prices and technology stock prices. For instance, Sadorsky (2012) reveals significant volatility 

spillovers from oil prices and technological stock prices to clean energy stock prices and suggests that 

oil could be used for portfolio diversification as well as for hedging clean energy investment. 

Meanwhile, based on estimations of dynamic conditional correlations, Sadorsky (2012) finds out that 

the clean energy stock prices correlate more with technological stock prices rather than with oil prices. 

Wen et al. (2014) document significant volatility spillovers between oil prices and clean energy stock 

prices, whereas Ahmad et al. (2018) confirm that one-dollar long position in the U.S. clean energy stock 

could be on average hedged by a 29% short position in crude oil.  

Given the impact of increasing financial integration between the Chinese and U.S. markets, the return 

and volatility information of major U.S benchmark indices contain significant predictive power for the 

Chinese stock market (Wang and Di Iorio, 2007; Johansson, 2010; George, 2014). Unlike the related 

studies that only focus on single market analysis, we measure the dynamic cross-market return and 

volatility linkages between different clean energy stock prices between the Chinese and U.S. financial 

markets. Since there is a growing number of investors using the cross-market investment strategies 

for portfolio diversification and risk management, our empirical results are expected to assist investors 

in designing optimal trading strategies among clean energy stock markets. Hence, we also contribute 

to a wide literature on energy related price co-movements and spillovers. In addition, our empirical 

results have important applications for policymakers since they may assist in designing effective energy 

policies targeted at accelerating Chinese clean energy development.   

Following the literature on clean energy stock prices, we consider VAR-MGARCH estimations to 

investigate return and volatility co-movement among clean energy stock prices, oil prices and 

technology stock prices across the Chinese and U.S. financial markets for the period from May 15, 2012 

to July 23, 2021.  Using the VAR-MGARCH model estimations, we find significant return and volatility 
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spillover effects between the Chinese and U.S. clean energy related stock prices. Typically, our 

empirical results suggest that the U.S. clean energy stock prices can be used to hedge a value 

investment in the Chinese new energy stock market. Consistent with the previous literature, we find 

that the stock prices of clean energy companies correlate more with technological companies than 

with oil prices.   

Our empirical results provide practical implications for investors and policymakers. Understanding 

dynamic interdependence and volatility spillovers between stock returns of clean energy companies, 

technological companies and oil prices is of ultimate interest for investors for portfolio design and risk 

management. Given significant return and volatility spillovers between the clean energy stocks in the 

Chinese and U.S. financial markets investors may take the U.S. clean energy stock prices as one of 

determining factors for their cross-market based investment strategy. Moreover, the positive 

conditional correlations between the stock returns of clean energy companies and technological 

companies suggest that policymakers may accelerate clean energy development by providing fiscal 

incentives and other supports to clean energy-related technology companies.   

The remainder of this paper is structured as follows. Section 2 and Section 3 outline empirical 

methodology and data sources that we use to conduct the analysis. Section 4 reports and discusses 

the main empirical results. Section 5 reports optimal hedge ratios and portfolio weights derived from 

the DCC-GARCH estimation. Finally, Section 6 summarises the empirical findings and concludes the 

paper with policy implications discussion. 

2. Methodology 

The econometric framework in this paper contains two components. In the first stage, we use a vector 

autoregression (VAR) model to fit the return series as the mean equation. Since a VAR model treats all 

input variables equally as endogenous variables, each variable is assumed to depend linearly on the 

past information of itself and all the other variables included in the system. Hence, using a VAR 

estimation allows us to capture autocorrelations and cross-autocorrelations among the return series.  

Following Sims (1980), a general VAR equation of order 𝑝 can be expressed as:  

𝑟𝑡 = 𝑚0 + ∑ 𝑚𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

+ ε𝑡 ,   ε𝑡|𝐼𝑡−1 ∼ 𝑁(0, 𝐻𝑡) 

εt  = zitHit
1/2

 ,   zt ∼ N(0,1) ,  

    (1) 

where rt is an (n × 1) vector of return series at time t, and  p is the optimal lag length chosen by the 

information criteria. mi  is an (n × n)  coefficient matrices. εit  is the random error term with 

conditional variance Ht where parameter Ii,t−1 represents all available market information at time t −

1 . As the next step, we apply the BEKK-GARCH model of Engle and Kroner (1995), the constant 

conditional correlation (CCC-GARCH) of Bollerslev (1990) and dynamic conditional correlation (DCC-

GARCH) model of Engle (2002) to explore the time-varying volatility of the return series. Engle and 

Kroner (1995) proposed the BEKK model to incorporate the dynamic interaction of the conditional 

variances and covariances over different time series. Hence, it allows to identify volatility transmission 

effect among the series. The general BEKK model of Engle and Kronor (1995) can be written as follows: 

Ht = CC′ + ∑ Ai
′εt−iε′t−i

K

i=1

Ai + ∑ Bi
′Ht−i

K

i=1

Bi ,  (2) 
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where 𝐻𝑡  is the conditional variance-covariance matrix,  𝐶 is an upper triangular matrix of constants, 

𝐴 and 𝐵  are 𝑛 × 𝑛  coefficient matrices. The BEKK model requires the estimation of a large set of 

parameters, which may lead to computational difficulties in practice. Alternatively, the CCC model of 

Bollerslev (1990) and the DCC model of Engle (2002) provide more parsimonious specifications. The 

CCC-GARCH model assumes a constant conditional correlation matrix among different time-series 

variables. However, many previous empirical studies have demonstrated that the assumption of the 

constant conditional correlations is too restrictive and unrealistic. By relaxing the assumption of 

constant conditional correlation, Engle (2002) developed the DCC-GARCH model that allows to 

measure time varying conditional correlations of asset returns. The estimation of DCC-GARCH model 

of Engle (2002) involves in two steps: we first estimate the GARCH parameters, and then the second 

step is to estimate the dynamic conditional correlations.  

Ht = DtRtDt (3) 

In Eq. (2), Ht represents an (n × n) conditional covariance matrix, Dt is an (n × n) diagonal matrix of 

the time-varying standard deviation hii,t
1/2

 from univariate GARCH estimations, Rt  is a time-varying 

conditional correlation matrix. In Eq. (3),  Qt is a symmetric positive definite variance matrix.  Q  is the 

unconditional correlation matrix of the standardised residuals zi,t (zi,t = εi,t/√hi,t).   

                                                       {

Dt = diag (h11,t
1/2

, ⋯ , hnn,t
1/2 )

Rt = diag(Qt)−1/2 Qt  diag(Qt)−1/2

Qt = (1 − θ1 − θ2)Q + θ1zt−1zt−1
′ + θ2Qt−1

 (4) 

The scalar parameters θ1  and θ2  are restricted to be non-negative and satisfy the mean reverting 

condition which θ1 + θ2  < 1.  The conditional correlation is estimated as:  

ρij,t =
qij,t

√qii,t qjj,t

 .  (5) 

3. Data 

The data of this paper incorporates four time series: (a) the Wilder Hill Clean Energy Index (ECO)4 , a 

modified equal-dollar weighted index that consists of 40 clean energy companies in the U.S market; 

(b) the CSI CN Mainland New Energy Index (CSI)5, the first clean energy sectoral index in the Chinese 

financial market which includes 50 Chinese clean energy companies; (c) the daily closing price of the 

nearest contract on the West  Texas Intermediate (WTI) crude oil futures contact,  one of benchmarks 

for   the global oil prices; (d) The Invesco China Technology ETF prices (CQQQ) 6, an Exchange Traded 

Funds (ETF) portfolio that tracks 110 public listed Chinese leading companies from e-commerce, 

information technologies, semiconductors and green energy technologies related sectors. Our sample 

 
4 For detailed constituents and holding weights of the Wilder Hill Clean Energy Index (ECO), please refer to: 

https://wildershares.com/stock.php  (accessed on 13, January, 2021). 
5 For detailed constituents and holding weights of the CSI CN Mainland New Energy Index (CSI), please refer to: 
https://www.csindex.com.cn/#/indices/family/detail?indexCode=000941 (accessed on 13 January, 2021). 
6 For detailed constituents and holding weights of the CQQQ ETF, please refer to: https://www.invesco.com/us/ financial-
products/etfs/holdings?audienceType=Investor&ticker=CQQQ (accessed on 17 January, 2021). 

https://wildershares.com/stock.php
https://wildershares.com/stock.php
https://www.csindex.com.cn/%23/indices/family/detail?indexCode=000941
https://www.csindex.com.cn/%23/indices/family/detail?indexCode=000941
https://www.invesco.com/us/financial-products/etfs/holdings?audienceType=Investor&amp;ticker=CQQQ
https://www.invesco.com/us/financial-products/etfs/holdings?audienceType=Investor&amp;ticker=CQQQ
https://www.invesco.com/us/financial-products/etfs/holdings?audienceType=Investor&amp;ticker=CQQQ
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period covers 2161 daily closing prices from May 15, 2012 to July 23, 2021.  All the data series are 

retrieved and collected from Thomson Reuters DataStream using the Reuters Instruments Code (RIC)7 

accordingly.  

For estimation purpose, we convert all sample series into natural logarithms. Figure 1a outlines the 

price development of underlying indices. For the purpose of comparison, each series is set equal to 

100 on May 15, 2012. Accordingly, we observe that CSI and ECO tend to move together, while CSI and 

WTI tend to move in a different direction. The 2014 oil shock due to the unexpected supply surplus 

had significant impacts on the global oil prices as the price fell sharply from a peak over $100 per barrel 

in mid-2014 to below $35 per barrel at the beginning of 2015. Meanwhile, the CSI index increased 

significantly reflecting an excellent financial performance of renewable energy sector in the Chinese 

market.  

For each series, the continuous compounded daily returns are calculated using 100 × ln(pt/pt−1). 

Time series graphs of daily return series show how volatility has changed across time (Figure 1b). 

Notice that all four series experience pronounced volatility clustering in the first quarter of 2020, a 

time period of the global COVID-19 outbreaks.  Descriptive statistics of daily returns are summarized 

in Table 1. As can be seen, each of these return series shows skewed and leptokurtic distribution, and 

normality test results from Jarque-Bera test and Shapiro-Wilk test confirm that none of these return 

series is normally distributed. In addition, Lagrange multiplier (LM) tests reveal the presence of ARCH 

effects in each of the return series. For the unit root tests, we perform the Augmented Dicky-Fuller 

(ADF), Phillips–Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. The null hypothesis of 

ADF and PP tests is that the data contains unit roots, while the KPSS test assumes the absence of unit 

roots. The results of these unit root tests are summarised in the lower part of the Table 1, suggesting 

that the first differences of all underlying variables are stationary.  

Figure 1: Time series plots of CSI, ECO, WTI and CQQQ 

Table 1: The descriptive statistics and unit root results of return series 

Index CSI ECO WTI CQQQ 

Descriptive statistics 

Mean 0.0005 0.0006 -0.0001 0.0006 
Median 0.0008 0.0014 0.001 0.001 
Maximum 0.0717 0.1501 0.3196 0.092 
Minimum -0.0983 -0.1624 -0.6017 -0.116 
Std.Dev 0.0195 0.0206 0.0318 0.0173 

 
7 We use Reuters Instrument Code, “.ECO”, “.CSI000941”,  “CLc1”, and “CQQQ.K” to retrieve and collect daily data  on the 
ECO index, the CSI index, WTI crude oil nearest future contact price and the CQQQ ETF from Thomson Reuters DataStream, 
respectively. 

 

(a) Standardised closing prices 

 

(b) Return series 
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Skewness -0.6651 -0.3714 -2.9233 -0.3951 
Kurtosis 3.3524 9.1141 78.1726 3.4997 
Jarque-Bera 1170.742*** 7525.687*** 553062.4*** 1158.508*** 
Shapiro-Wilk 0.94893*** 0.90975*** 0.70357*** 0.96665*** 
ARCH-LM 317.88*** 373.18*** 416.69*** 206.72*** 
Observations 2160 2160 2160 2160 

Unit root test 

ADF -11.862*** -12.401*** -12.547*** -12.635*** 
PP -2137.9*** -2246.3*** -2301.7*** -2046.2*** 
KPSS 0.29112 0.29662 0.10132 0.046714 

Note: the number of observations is 2160 for each series. *, **, and *** represents significance at 10%, 5% and 1% level 
respectively. Normality is tested by Shapiro-Wilk test. ARCH-LM test performs the LM test for Autoregressive Conditional 
Heteroskedasticity with the null assumption of no ARCH effects. Unit roots are tested using the Augmented Dicky and 
Fuller (ADF), Phillips–Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root tests. 

4. Empirical data and discussion 

The VAR-BEKK model is used as a benchmark to study the return and volatility spillovers among the 

underlying variables. As discussed above, the CCC and DCC models will be utilised to investigate the 

conditional correlation, dynamic hedge ratios and optimal portfolio weights among the series.  In order 

to account for the presence of leptokurtic distributions in the return series, the multivariate GARCH 

models with the Student-t skewed distribution are used to model the conditional variance equation. 

For the purpose of model comparisons, we also perform our VAR-MGARCH estimations with the use 

of the Gaussian normally distributed error term and we compare models with respect to their 

information criteria.  

Table 2: VAR parameter estimates (Mean equation) 

 VAR(1)-BEKK(1,1) VAR(1)-CCC(1,1) VAR(1)-DCC(1,1) 

Mean Coeff T-Stat P-value Coeff T-Stat P-value Coeff T-Stat P-value 

𝑚10 0.001 2.300 0.021 0.0007 1.0032 0.3157 0.001 1.944 0.052 
𝑚11 -0.032 -1.697 0.090 -0.0342 -0.2017 0.8402 -0.028 -1.484 0.138 
𝑚12 0.098 6.776 0.000 0.0927 0.4277 0.6689 0.096 3.443 0.001 
𝑚13 -0.006 -0.822 0.411 -0.0085 -0.0618 0.9507 -0.010 -0.536 0.592 
𝑚14 0.073 3.953 0.000 0.0728 4.5556 0.0000 0.076 4.324 0.000 
𝑚20 0.001 3.318 0.001 0.0010 0.1887 0.8503 0.001 3.344 0.001 
𝑚21 -0.004 -0.242 0.809 -0.0175 -0.2992 0.7648 -0.008 -0.427 0.669 
𝑚22 0.038 1.956 0.050 0.0327 0.1056 0.9159 0.032 1.172 0.241 
𝑚23 -0.008 -0.694 0.488 -0.0159 -0.0284 0.9773 -0.012 -0.445 0.656 
𝑚24 -0.014 -0.716 0.474 -0.0118 -0.0665 0.9470 -0.012 -0.818 0.413 
𝑚30 0.001 2.146 0.032 0.0008 0.8266 0.4085 0.001 2.286 0.022 
𝑚31 -0.014 -0.773 0.440 -0.0121 -0.3221 0.7474 -0.011 -0.597 0.550 
𝑚32 0.005 0.255 0.799 -0.0067 -0.0273 0.9782 -0.006 -0.329 0.742 
𝑚33 -0.044 -2.461 0.014 -0.0320 -0.0457 0.9636 -0.039 -0.455 0.649 
𝑚34 -0.008 -0.388 0.698 -0.0112 -0.0390 0.9689 -0.007 -0.353 0.724 
𝑚40 0.001 4.870 0.000 0.0013 0.4493 0.6532 0.001 5.110 0.000 
𝑚41 -0.011 -0.692 0.489 -0.0186 -0.3383 0.7351 -0.010 -0.574 0.566 
𝑚42 0.014 0.839 0.401 0.0110 0.0301 0.9760 0.010 0.208 0.835 
𝑚43 -0.012 -1.173 0.241 -0.0216 -0.1279 0.8983 -0.022 -3.070 0.002 
𝑚44 -0.008 -0.370 0.712 -0.0011 -0.0091 0.9927 0.000 -0.015 0.988 

Note: This table reports the estimated VAR parameters using VAR(1)-BEKK(1,1), VAR(1)-CCC(1,1) and VAR(1)-DCC(1,1) 
model, respectively. The multivariate Student-t distribution is used in model estimations to account for the presence of 
leptokurtosis distribution in the return series.  The models are fitted by using Quasi-Maximum Likelihood estimation 
(QMLE), where T-statistics and P-values are estimated using robust standard errors. Variable order is CSI (1), ECO (2), WTI 
(3), CQQQ (4). There are 2159 daily observations, and all computations are carried out by using R and WinRATS 10.  
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Since VAR estimations assume that each of the variables depends on the past information of the 

variables included in the system, correct identification of lag length is crucial to obtain accurate model 

estimations. For the selection of optimal lag length, we apply empirical approaches of the Akaike's 

information criterion (AIC), the Bayesian information criterion (BIC), the final prediction error criterion 

(FPE) and Hannan–Quinn information criterion (HQIC). Within the scope of our study and based on the 

results of information criteria, we conduct a four-variable VAR estimation with one lag length to model 

our mean equation. Table 2 presents the estimated coefficients of mean parameters using models of 

VAR(1)-BEKK(1,1), VAR(1)-CCC(1,1) and VAR(1)-DCC(1,1), respectively. The results show that, on 

average, one period lag of ECO index returns has a positive impact on the current period of CSI returns, 

with the impact being statistically significant at 1% level in BEKK and DCC model. Alternatively, the 

impact of past returns of CSI index on current returns of ECO index remains limited and statistically 

insignificant in all of our MGARCH model estimations. The presence of a unidirectional return spillovers 

from the ECO to CSI is important in establishing a positive relationship between the current period of 

CSI returns and last period of ECO returns. This result is coherent with the findings reported by Bonga-

Bonga (2018) and Samia et al. (2020), which establishes that the stock returns of clean energy 

companies are heavily affected by shocks from other markets. Moreover, as suggested by George 

(2014), the returns of the major U.S. benchmark indices have significant power to predict a future 

moving direction of stocks in the Chinese market. Since there is no overlap of trading hours between 

the U.S. and Chinese financial market, investors may use the U.S. renewable energy index as the prior 

indicator to forecast the next day’s direction of the Chinese renewable energy stocks. 

Table 3: VAR-MGARCH estimations (variance equation parameters) 

 VAR(1)-BEKK(1,1) VAR(1)-CCC(1,1) VAR(1)-DCC(1,1) 

𝐇𝐭 Coeff T-Stat P-value Coeff T-Stat P-value Coeff T-Stat P-value 

𝑐11 0.001 4.621 0.000 0.0000 0.4122 0.6802 0.000 1.049 0.294 
𝑐21 0.000 -2.606 0.009       
𝑐22 0.002 6.908 0.000 0.0000 0.2748 0.7834 0.000 1.455 0.146 
𝑐31 0.001 1.484 0.138       
𝑐32 0.001 1.306 0.192       
𝑐33 0.003 6.204 0.000 0.0000 1.3014 0.1931 0.000 2.168 0.030 
𝑐41 -0.001 -1.154 0.249       
𝑐42 0.001 2.050 0.040       
𝑐43 0.000 0.040 0.968       
𝑐44 0.001 1.008 0.313 0.0000 0.2139 0.8306 0.000 4.511 0.000 
𝛼11 0.222 8.426 0.000 0.0652 0.3228 0.7469 0.069 2.931 0.003 
𝛼12 0.018 1.085 0.278 0.0163 0.2788 0.7804 0.006 0.382 0.703 
𝛼13 0.061 3.414 0.001 -0.0008 -0.2974 0.7662 -0.001 -1.742 0.081 
𝛼14 0.035 2.147 0.032 0.0458 0.1320 0.8950 0.031 1.861 0.063 
𝛼21 -0.015 -0.549 0.583 0.0104 0.7568 0.4492 0.009 0.995 0.320 
𝛼22 0.173 5.190 0.000 0.0408 0.2551 0.7987 0.044 2.116 0.034 
𝛼23 -0.025 -1.042 0.297 0.0030 0.0193 0.9846 0.003 0.871 0.384 
𝛼24 0.024 1.004 0.315 0.0208 0.0669 0.9466 0.009 0.464 0.642 
𝛼31 0.001 0.155 0.876 0.0155 0.1422 0.8869 0.017 1.461 0.144 
𝛼32 -0.002 -0.236 0.813 0.0193 0.4347 0.6638 0.016 1.734 0.083 
𝛼33 0.306 15.081 0.000 0.1023 0.2753 0.7831 0.110 6.801 0.000 
𝛼34 -0.008 -1.181 0.238 0.0076 0.0815 0.9350 -0.004 -0.238 0.812 
𝛼41 -0.048 -1.407 0.159 0.0145 0.0390 0.9689 0.019 1.290 0.197 
𝛼42 0.020 0.671 0.502 0.0211 0.3075 0.7585 0.014 4.065 0.000 
𝛼43 0.014 0.302 0.762 -0.0009 -0.9544 0.3399 -0.001 -5.064 0.000 
𝛼44 0.112 4.604 0.000 0.0599 0.3973 0.6911 0.052 0.717 0.074 
𝛽11 0.970 145.866 0.000 0.9495 2.6321 0.0085 0.928 26.846 0.000 
𝛽12 -0.002 -0.327 0.744 -0.0032 -0.0374 0.9702 0.013 1.157 0.247 
𝛽13 -0.015 -2.778 0.005 0.0000 0.0009 0.9993 0.000 -0.268 0.789 
𝛽14 -0.004 -1.024 0.306 -0.1975 -0.2234 0.8233 -0.101 -1.751 0.080 
𝛽21 0.002 0.211 0.833 0.0069 0.1021 0.9187 -0.004 -0.229 0.819 
𝛽22 0.982 118.264 0.000 0.9515 1.5611 0.1185 0.953 41.699 0.000 
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𝛽23 0.007 0.874 0.382 -0.0040 -0.0237 0.9811 -0.004 -1.343 0.179 
𝛽24 -0.005 -0.711 0.477 -0.0992 -0.1018 0.9190 -0.037 -1.819 0.069 
𝛽31 -0.001 -0.391 0.696 -0.0094 -0.2017 0.8401 -0.021 -1.007 0.314 
𝛽32 -0.001 -0.252 0.801 -0.0175 -0.0965 0.9231 -0.015 -1.407 0.160 
𝛽33 0.940 129.665 0.000 0.8726 3.5413 0.0004 0.864 32.517 0.000 
𝛽34 0.004 1.240 0.215 -0.0260 -0.1522 0.8790 0.033 0.655 0.512 
𝛽41 0.017 1.387 0.165 0.0209 0.0479 0.9618 -0.005 -0.115 0.908 
𝛽42 -0.007 -0.678 0.498 -0.0247 -0.6290 0.5293 -0.006 -2.872 0.004 
𝛽43 0.004 0.224 0.823 0.0021 0.1661 0.8681 0.003 1.195 0.232 
𝛽44 0.986 144.157 0.000 0.7564 0.9226 0.3562 0.850 7.683 0.000 
𝜌21    0.1704 1.7339 0.0829    
𝜌31    0.0804 0.5506 0.5819    
𝜌32    0.2958 0.9973 0.3186    
𝜌41    0.3954 2.5509 0.0107    
𝜌42    0.5808 1.9114 0.0559    
𝜌43    0.2329 0.6494 0.5161    
𝜃1       0.021 5.389 0.000 
𝜃2       0.947 78.443 0.000 

Note: This table report the estimated VAR parameters using VAR(1)-BEKK(1,1), VAR(1)-CCC(1,1) and VAR(1)-DCC(1,1) 
model, respectively. The multivariate Student-t distribution is used in model estimations to account for the presence of 
leptokurtosis distribution in the return series.  The models are fitted by using Quasi-Maximum Likelihood estimation 
(QMLE), where T-statistics and P-values are estimated using robust standard errors. Variable order is CSI (1), ECO (2), WTI 
(3), CQQQ (4). There are 2159 daily observations, and all computations are carried out by using R and WinRATS 10. 

The estimated coefficient of CQQQ in the CSI mean equation (𝑚14) is positive, of the same level of 

magnitude and statistically significant at 1% level for each of our VAR-MGARCH estimations. The 

significant estimated coefficient of 𝑚14 indicates that the past period returns of CQQQ have positive 

influences on the current period of CSI returns. This noticeable return transmission relationship implies 

that the average performance of the Chinese renewable energy stocks closely relates to the 

performance of technological companies. Given that technology remains one of the key elements for 

renewable energy development (Zhen et.al., 2021), having technological breakthroughs in renewable 

energy can encourage investors to become more willing to pay for a premium to green their portfolios 

in the financial market (Popp, 2011; Wang et al, 2019). Meanwhile, the insignificant coefficients of 𝑚13 

and 𝑚31 indicate that the return spillover transmissions between the CSI and WTI remain relatively 

weak, which is consistent with findings reported in previous studies of Henriques and Sadorsky (2008) 

and Sadorsky (2012). 

In terms of the conditional variance equation, Table 3 reports the estimated coefficients using BEKK, 

CCC and DCC model specifications, respectively. For own conditional ARCH (𝛼𝑖𝑖,𝑡) and GARCH (𝛽𝑖𝑖,𝑡) 

effects, all estimated coefficients on own conditional volatility effects are statistically significant at 10% 

level in VAR(1)-DCC(1,1) model specification. Since the estimated positive coefficients of ARCH and 

GARCH parameters are significant and satisfy the precondition of 𝛼𝑖𝑖,𝑡 + 𝛽𝑖𝑖,𝑡 < 1, the volatilities of 

our return series are highly persistent to shocks. Given that the coefficients of 𝛼𝑖𝑖,𝑡 are smaller than 

𝛽𝑖𝑖,𝑡 , the GARCH-type volatility persistence plays a more substantial role than the short-term ARCH 

persistence. Besides the own conditional ARCH and GARCH effects, the multivariate GARCH 

estimations show mixed results of volatility spillover effects among the underlying series. For instance, 

the BEKK model shows significant evidence of short-term persistent bidirectional volatility spillovers 

between CSI and ECO (𝛼12, 𝛼21), and unidirectional volatility spillovers between CSI and CQQQ (𝛼14). 

For the long-term persistence, there is evidence of volatility spillovers between CSI and ECO (𝛽12), and 

between CSI and CQQQ (𝛽14). Comparing to the BEKK model estimations, the restricted CCC and DCC 

model specifications reveal less statistical evidence of volatility spillovers among the underlying return 

series. Our results of the significant spillover between CSI and CQQQ support the findings of Sadorsky 

(2012), Román et al. (2018), and Samia et al. (2020) that technology companies are one of the key 

contributors of volatility dynamics in stock returns of clean energy companies.  
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For the CCC model specification, all estimated conditional correlations between CSI and ECO (𝜌21), CSI 

and CQQQ (𝜌41), are positive and significant at 10% and 1% level, respectively. However, there is no 

statistical evidence to support a significant conditional correlation between CSI and WTI (𝜌31). These 

results are consistent with Sadorsky (2012), Kumar et al. (2012), Zhang and Du (2017) and Sun et al. 

(2019) who document that clean energy related stocks tend to correlate more with technological 

stocks rather than oil prices.  For the DCC model specification, the estimated coefficients of the DCC 

parameters (𝜃1, 𝜃2) are found to be positive and statistically significant at 1% level. Therefore, the 

assumption of a constant conditional correlation is inadequate and might be misleading. Given that 

the sum of the DCC parameters is strictly less than one, the dynamic conditional correlations are mean 

reverting. 

Table 4: Diagnostic tests for standardised univariate residuals 

 VAR(1)-BEKK(1,1) VAR(1)-CCC (1,1) VAR(1)-DCC(1,1) 

Index CSI ECO WTI CQQQ CSI ECO WTI CQQQ CSI ECO WTI CQQQ 

Q(20)r  18.288 31.873 19.624 18.266 20.402 30.925 18.045 19.813 19.995 28.570 18.119 17.852 

P-value 0.568 0.045 0.482 0.570 0.433 0.056 0.584 0.470 0.458 0.097 0.580 0.597 

ARCH 18.546 31.024 18.268 54.748 8.982 16.933 14.491 23.971 8.657 13.085 14.499 14.852 

P-value 0.420 0.029 0.438 0.000 0.960 0.528 0.697 0.156 0.967 0.787 0.696 0.672 

The diagnostic tests for both univariate and multivariate standardised residuals and standardised 

residuals squared are reported in Table 4 and Table 5, respectively. Q-statistics and the LM ARCH tests 

suggest the absence of serial correlation and ARCH effects in the DCC model specification. Moreover, 

in the bottom of the Table 5, both the AIC and SIC information criteria suggest that the VAR(1)-DCC(1,1) 

model estimation fit the data the best. As a consequence, these diagnostic tests confirm the validity 

of the dynamic conditional correlation graphs displayed in Figure 3.   

Table 5: Diagnostic tests for standardised multivariate residuals and model comparisons 

 VAR(1)-BEKK(1,1) VAR(1)-CCC(1,1) VAR(1)-DCC(1,1) 

  Normal T-distributed Normal T-distributed Normal T-distributed 

Q(20)r  314.431 349.143 300.004 304.307 347.955 328.318 

P-value 0.577 0.126 0.783 0.727 0.136 0.362 

ARCH 403.130 363.820 174.520 159.410 76.270 209.170 

P-value 0.000 0.000 0.903 0.984 0.963 0.314 

Log L 23239.411 23538.983 23165.056 23574.260 23130.175 23598.401 

AIC -21.471 -21.757 -21.421 -21.800 -21.383 -21.826 

SIC -21.307 -21.591 -21.258 -21.634 -21.230 -21.671 

In the top of the Figure 2, the conditional correlation between the CSI returns and ECO returns is 

positive covering a range between a minimum of 0.02 and a maximum of 0.55. The dynamic correlation 

between CSI and ECO index has three different volatility regimes in our sample period. Until 2016, the 

correlation between the CSI and ECO index is relatively more volatile than other time horizons. Notice 

that the correlation between the CSI returns and ECO returns reached 0.41 in January 2016 which can 

be seen as the effect of the conclusion of the Paris Agreement at the end of 2015. The Paris Agreements 

is a strong signal to secure market expectations of future industrial developments in clean energy 

sector, and therefore to encourage capital reallocations to clean energy stock market as investors are 

becoming aware of the impacts of governmental policies on climate changes and climate-related risks 

for companies (Reboredo, 2018). For the period between 2016 and 2019, the correlation is relatively 

stable around 0.2. During the first wave of the global COVID-19 pandemic, the trend of the correlation 

increased significantly and reached the maximum level of 0.55 in March 2020. However, since then we 

have observed a decreasing tendency between these two indices.  
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Figure 2: Dynamic conditional correlations from VAR(1)-DCC(1,1) estimation 

 

The dynamic conditional correlation between returns of CSI and WTI varies from a minimum of -0.13 

to a maximum of 0.46 in our sample. Overall, the substitution effect between the two markets is 

primarily determined by a new orientation of economic structure in China and market uncertainties in 

the global oil market. For instance, the correlation reached its lowest value in January 2015 in 

conjunction with the global oil shock of 2014-2016 in OPEC member countries. Meanwhile, Chinese 

investment in renewable energy has increased significantly due to a series of new energy policies which 

were initiated in China after 2010. These policies include the China 12th Renewable Energy 

Development Five Year Plan (2011-2015), Energy Saving and New Energy Automotive Industry 

Development Plan (2012-2020), and the dual carbon goals with respect to the renewable energy 

development and environmental protection. The downward trend in oil prices and upward trend in 

China’s clean energy stock prices has led investors to rebalance their portfolios in order to reduce risk. 

Furthermore, we find that there is a significant increase in dynamic conditional correlations between 

CSI and WTI during the first wave of the global COVID-19 outbreak. This result supports the argument 

of Foglia and Angelini (2020) who claim that the interconnections between crude oil and clean energy 

financial makert rises significantly during period of high uncertaities. Although, the estimated VAR 

model suggests an insignificant return relationship between CSI and WTI, the DCC specification reveals 

a significant volatility spillover between the two and suggests that investors may use WTI to hedge an 

investment in the Chinese renewable energy stocks.   
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At the same time, the relationship between CSI and CQQQ index returns is always strong and positive. 

The conditional correlation varies between a minimum of 0.23 and a maximum of 0.68. The positive 

and strong correlation between CSI and CQQQ index indicates a close relationship between  these two 

markets. Overall, it suggests that the stock returns of the Chinese renewable energy companies closely 

depend on the technological companies, as any unexpected shocks to the CQQQ may generate a 

similar level of impact on stock returns of Chinese renewable energy companies. Thus, investors should 

take the overall financial performance of Chinese technological companies as one of the primary 

indicators to predict the price dynamics of the Chinese clean energy companies. 

5. Hedge ratios and optimal portfolio weights 

The conclusions of the empirical analysis are noteworthy, nevertheless, it is important to note that 

there are certain limitations to the conclusions due to data availability already mentioned above. As 

there are no quarterly data on impairment ratio in ECB database prior to 1Q 2015 (the time series is 

discontinued), the IAS 39 period unfortunately does not capture the economic recession in 2008. It 

would certainly be interesting to observe the development of impairment under IAS 39 rules during 

the recession. After all, the call for new provisioning model based on expected credit loss resulted from  

Based on the DCC models, we follow the method of Kroner and Sultan (1993) to construct the 

long/short hedge ratios of underlying assets. The hedge ratio between a long position in clean energy 

stock 𝑖 and a short position in a second asset 𝑗 is represented as: 

βij,t =
hij,t

hjj,t

 (6) 

where ℎ𝑖𝑗,𝑡 is the conditional covariance between assets 𝑖 and 𝑗 at time 𝑡, and ℎ𝑗𝑗,𝑡 is the conditional 

variance of asset 𝑗. In addition to the dynamic hedge ratios, the conditional volatilities from our DCC 

estimation can also be used to construct optimal portfolio weights. In line with Kroner and Ng (1998), 

we define the optimal weight of an asset 𝑤𝑖𝑗,𝑡 in one-dollar portfolio as:  

Wij,t =
hjj,t − hij,t

hii,t − 2hij,t + hjj,t

 

(7) 
Wij,t {

0 if wij < 0

wij,t if 0 ≤ wij,t ≤ 1

1 if wij,t ≥ 1

 

Figure 3 shows the dynamic hedge ratios computed from the DCC specification. We find that pairwise 

hedge ratios show considerable variability in the first quarter of 2020 which is the time of the first 

wave of global COVID-19 pandemic. The exceptions are the CSI/CQQQ hedge ratios where the lowest 

values were recorded at the same time. As reported in the top of the Table 6, the average value of 

hedge ratio between CSI and ECO is 0.18 while the average value between CSI and WTI and between 

CSI, and CQQQ is 0.11 and 0.38, respectively. This indicates that a $1 long position in clean energy 

index in China can be hedged for 18 cents with a short position in clean energy index in the U.S market. 

Accordingly, a $1 long position in clean energy index can be hedged for 11 cents and 38 cents with a 

short position in the oil and technological index, respectively.  

Table 6: Summary statistics of Hedge ratios and portfolio weights 

Hedge ratio (long/short) Mean  St.dev. Min Max 

CSI/ECO 0.18 0.06 0.07 0.6 

CSI/WTI 0.11 0.09 0.04 1.06 
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CSI/CQQQ 0.38 0.09 0.00 1.00 

Portfolio weights     

CSI/ECO 0.5 0.15 0.09 0.97 
CSI/WTI 0.57 0.2 0.18 1.00 
CSI/CQQQ 0.46 0.18 0.00 0.92 

 

Figure 3: Time-varying hedge ratios estimated from the DCC model 

 

The summary statistics of optimal portfolio weights computed from the DCC estimation are reported 

in the lower part of the Table 6.  Overall, the average weight for the CSI/ECO portfolio is 0.5, illustrating 

that for a $1 portfolio, 50 cents should be invested in each asset in this portfolio. Given that the average 

optimal weight for the CSI/WTI portfolio is 0.57, for a $1 portfolio, 57 cents will be allocated in CSI 

index and remaining 43 cents will be spent in the oil market. Likewise, the average optimal weight for 

CSI/CQQQ portfolio indicates that 46 cents will be allocated in CSI index and remaining 54 cents will 

be allocated in technology index.  

6. Conclusions 

Considering the global challenges of energy security and climate changes, the volume of investment in 

the renewable energy sector grows rapidly in the Chinese market. Understanding dynamic 

interdependence between stock returns of clean energy companies, technological companies and oil 

price is of ultimate interest for investors and policymakers. Here, we have used the VAR-MGARCH 

framework to investigate dynamic connectedness between oil prices and stock returns of clean energy 

related and technological companies in China and U.S. financial markets.  

Our empirical results show that the VAR (1)-DCC (1,1) model fits the data the best and our empirical 

findings can be summarised as follows. First, the significant estimated parameters of our VAR-MGARCH 

estimation suggest that past returns of the U.S. renewable energy companies have significantly 

influenced the current returns of Chinese renewable energy companies. Meanwhile, we support the 

findings from previous literature (Sadorsky, 2012; Kurmar et al., 2012; Zhang and Du, 2017; Ferrer et 

al., 2018; Sun et al., 2019) that the stock returns of Chinese clean energy companies correlate more 

with technological companies than with oil prices. Given the presence of significant own conditional 

ARCH and GARCH effects, our estimated conditional variance parameters also support the significance 

of time-varying volatility spillovers between CSI and ECO, and between CSI and CQQQ. For each pair of 

series, the dynamic conditional correlations reached their highest values in the first quarter of 2020, 

which is the time for the first wave of the global COVID-19 outbreak. The conditional volatilities from 

the DCC model can be used to estimate dynamic hedge ratios and optimal portfolio weights. On 

average, a $1 long position in the clean energy index in China can be hedged by 18 cents of a short 

position in clean energy index in the U.S market. For a $1 CSI/ECO portfolio, 50 cents should be invested 

in each asset. The average hedge ratio between CSI and WTI and between CSI, and CQQQ is 0.11 and 
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0.38, respectively, suggesting that a $1 long position in clean energy index can be hedged by 11 cents 

and 38 cents short positions in the oil and technological index, respectively. Besides, the average 

optimal weight for CSI index in a $1 CSI/ECO, CSI/WTI and CSI/CQQQ portfolio is 0.5, 0.57 and 0.46, 

respectively. 

Our empirical findings have considerable practical implications for investors and policymakers. Given 

the significant relationship between the stock prices of clean energy and technology companies in 

China’s financial market, investors should pay more attention to the fluctuations of technological 

stocks as they are one of the main contributors to volatility dynamics of the Chinese clean energy 

companies. Since there is a growing number of investors who use cross-market strategies for risk 

management, U.S. clean energy stock prices and oil prices should be taken into account for designing 

optimal portfolios and investments in China’s clean energy market. Furthermore, our significant 

evidence of positive conditional correlations between the stock prices of the Chinese clean energy 

companies and the stock prices of Chinese technological companies indicate that technology stocks 

provide limited hedging opportunities for a value investment in China’s clean energy market. 

Nevertheless, policymakers should be aware of the importance of clean energy technologies for clean 

energy development in China. Although China has made great progress on clean energy development 

and has become the world’s largest clean energy producer, most of the core technologies of clean 

energy development are imported from the U.S. and the EU markets (Zhang et al. 2017). Considering 

the potential impacts of the U.S.-China trading wars, the weakness in clean energy technologies may 

lead China’s domestic clean energy enterprises to face challenges of overcoming issues in unstable 

grid-connected clean energy supply system, low operational efficiency and energy waste. In the short 

run, policymakers may accelerate clean energy developments by providing a form of support policies 

and professional services to enhance diffusion of technological development across different regions 

and clean energy companies in the Chinese market. Since the energy sector in China is largely owned 

by the government, fiscal incentives such as feed-in tariffs, tax reductions and government subsidies 

remain one of the best choices for China’s policymakers to promote clean energy developments 

(Reboredo and Wen, 2015). In the long run, Al Mamun et al. (2018) emphasise the ineffectiveness of 

direct government interventions on clean energy company development. Instead of providing direct 

supports, policymakers should pay more attention to designing market-based supports, such as 

offering flexible financial support mechanisms for clean energy companies through financial 

intermediaries such as banks, funds, credit unions and stocks. In addition, the government should 

increase the number of the grid-connected renewable energy supply systems to provide a stable 

source of electricity for energy consumers, while the positive price discriminations of clean energy 

electricity encourage public adoption of clean energy sources effectively. It is appropriate for the 

government to propose a form of fiscal incentives and economic incentives to encourage the energy 

transformations among consumers and companies in energy-intensive industries while introducing 

more stringent legislations for reducing the dependency of fossil fuel-based productions. 
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