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Application of the XGBoost algorithm and Bayesian 

optimization for the Bitcoin price prediction during 

the COVID-19 period 

Author 

Jakub Drahokoupil1 

Abstract 

Aim of this paper is to use Machine Learning algorithm called XGBoost developed by Tianqi Chen and 

Carlos Guestrin in 2016 to predict future development of the Bitcoin (BTC) price and build an 

algorithmic trading strategy based on the predictions from the model. For the final algorithmic 

strategy, six XGBoost models are estimated in total, estimating following n-th day BTC Close 

predictions: 1,2,5,10,20,30. Bayesian optimization techniques are used twice during the development 

of the trading strategy. First, when appropriate hyperparameters of the XGBoost model are selected. 

Second, for the optimization of each model prediction weight, in order to obtain the most profitable 

trading strategy. The paper shows, that even though the XGBoost model has several limitations, it 

can fairly accurately predict future development of the BTC price, even for further predictions. The 

paper aims specifically for the potential of algorithmic trading during the COVID-19 period, where 

BTC cryptocurrency suffered extremely volatile period, reaching its new all-time highest prices as 

well as 50% losses during few consecutive months. The applied trading strategy shows promising 

results, as it beats the B&H strategy both from the perspective of total profit, Sharpe ratio or Sortino 

ratio. 

AMS/JEL classification: C11, C39, C61, G11 

Keywords: XGBoost; Bayesian Optimization; Bitcoin; Algorithmic trading 

1. Introduction 

In the recent years, algorithmic trading experiences upsurge of Machine Learning (ML) algorithms 

usage, such as neural nets, decision tree methods, support vector machines methods and others, 

where the mentioned methods have multiple subcategories and modifications, each of them used 

for a specific purpose. An unquestionable advantage of these algorithms is fact, that they can be 

used for both regression and classification tasks. Furthermore, the advancement of the 

cryptocurrency market and rise in the crypto trading volume shows increasing attractivity of these 

assets, especially for young retail investors, rather than for hedge funds and similar types of 

institutional investors as shown by Giudici, Milne, & Vinogradov, 2019. The just elapsed period of 

uncertainty caused by the worldwide COVID-19 pandemic caused havoc within all the financial 

markets, including cryptocurrency markets. All the above-mentioned facts suggest that it could be an 
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ideal time for the deployment of the ML based trading strategy of the selected cryptocurrency. In 

this paper, the selected cryptocurrency would be Bitcoin (BTC), more specifically the timeseries of 

USD-BTC exchange rate, as the widely known and mostly traded cryptocurrency.  

Along with the rise of the ML methods, triggered by the increase of computational capacity of 

common computers, Bayesian based methods have received their recognition as well. Used in a wide 

range of various fields (biology, math, physics etc.) as shown by Chen, Huang, Ibrahim, & Kim, 2008, 

Trassinelli, 2020 or Zhang, Johnson, Little, & Cao, 2010. Of course, finance could not stand aside 

(Chandra & He, 2021). Markov Chain Monte Carlo methods are commonly used for the parameters 

inference (Zheng, et al., 2017). And finally, Bayesian optimization techniques, which will be used in 

the paper as well, are used to search the parameters space more efficiently (Snoek, Larochelle, & 

Adams, 2012). 

ML methods in trading strategies can have different applications from short-term trading based on 

the neural networks (Chandra & He, 2021), to Extreme Gradient Boosting algorithm (XGBoost) used 

for long-term trading strategy (Zolotareva, 2021). 

The aim of this paper is to propose a trading strategy based on the Extreme Gradient Boosting 

algorithm (XGBoost) predictions of the BTC Close value, described further in the text, where Bayesian 

optimization will help select the XGBoost hyperparameters and optimise the proper weights for each 

n-th day prediction in the final strategy. 

2. Data and Methodology 

2.1. XGBoost algorithm 

In general, gradient boosting algorithms use so called additive modelling, where in most cases, 

multiple weak learners (simple models) are estimated one by one into an ensembled model. Every 

subsequent model aims to explain remaining residuals. The errors are minimized by the Gradient 

Descent algorithm. Unlike the standard gradient boosted decision trees, Extreme Gradient Boost 

(XGBoost) algorithm is far better optimized and has several enhancements, which makes it extremely 

effective both in terms of prediction performance and computational efficiency. The optimization of 

the algorithm is achieved by (Malik, Harode, & Singh, XGBoost: A Deep Dive into Boosting 

(Introduction Documentation), 2020) (XGBoost: A Scalable Tree Boosting System, 2016): 

• Parallelization 

• Tree pruning 

With the enhancements in: 

• Regularization 

• Sparsity Awareness 

• Weighted Quantile Sketch 

• Cross-validation 



 

 

Figure 1: XGBoost 

 

Data source: https://medium.com/time-to-work/xgboost-eafd3beb3fa6 

Even though the XGBoost itself is still relatively new algorithm, it has already been applied to 

multiple various fields and managed to become an industry standard, mostly for classification tasks, 

as proved by the Kaggle competitions, where XGBoost dominates many of them. Of course, XGBoost 

has already some competitor algorithms, such as LightGBM from Microsoft Research or CatBoost 

from Yandex Technology, with promising performance. Furthermore, in comparison with other ML 

algorithms, which may be hard to interpret, or it is difficult to measure the importance of the 

features, XGBoost offers limited ways how to interpret to model, especially importance of the 

features and its effect on the target variables via Feature Importance plots2 PDP (Partial Dependence 

Plots) plots, ICE (Individual Conditional Expectation) plots or SHAPS (SHapley Additive exPlanations) 

(Güneş, Tharrington, Hunt, & Xing, 2020).  

A drawback of the XGBoost model is the total number of tuneable hyperparameters, which may 

significantly influence the prediction performance of the model or its computational efficiency. 

Firstly, the most important parameter is booster, where we can specify the type of the weak learner 

basic model, where possible models are decision tree, linear model, or DART model. The tree specific 

major hyperparameters, with respect to its Python XGBoost library version, are:  

• Learning rate alias eta – defines step size shrinkage used in update to prevent overfitting 

• Gamma – defines minimum loss reduction required to make a further partition on a lead 

node 

• Lambda – L2 regularization term on weights. Increasing this value makes the model more 

conservative and less likely to overfit 

• Alpha - L1 regularization term on weights. Increasing this value makes the model more 

conservative and less likely to overfit 

• Number of trees (estimators) – maximum number of basic models (may not be reached if 

the early stopping criteria is met). Increasing this value makes the model more complex and 

more likely to overfit 

 
2 The Feature Importance plots for all the models may be seen in the Appendix. 



 

 

• Grow policy – controls a way the new nodes are added to the tree (values: deptwise, 

lossguide) 

• Objective function - specify the learning task and the corresponding learning objective. 

Learning task may be regression, classification, survival analysis and other and the 

corresponding objective may by Squared error, Huber loss for regression, logistic or hinge for 

classification and others for survival and multinomial classification 

• Max depth – defines the maximum depth of each tree. Increasing this value makes the 

model more complex and more likely to overfit 

And several minor such as: 

• Scale pos weight - control the balance of positive and negative weights, useful for 

unbalanced classes. 

• Colsample – family of parameters made for subsampling of the features for each estimated 

model 

• Sampling method - the method to use to sample the training instances 

• Subsample - subsample ratio of the training instances. Setting it to 0.5 means that XGBoost 

would randomly sample half of the training data prior to growing trees. and this will prevent 

overfitting. Subsampling will occur once in every boosting iteration. 

• Minimal child weight - minimum sum of instance weight (hessian) needed in a child. If the 

tree partition step results in a leaf node with the sum of instance weight less than 

min_child_weight, then the building process will give up further partitioning 

• Max delta step - maximum delta step we allow each leaf output to be. If the value is set to 0, 

it means there is no constraint. If it is set to a positive value, it can help making the update 

step more conservative. Usually this parameter is not needed, but it might help in logistic 

regression when class is extremely imbalanced. 

• Cross validation – parameter defining umber of cross validated folds  

• Base score – the initial prediction score of all instances, global bias, for sufficient number of 

iterations, changing this value will not have too much effect. 

and few others, which can be viewed in more detail at 

https://xgboost.readthedocs.io/en/stable/python/python_intro.html. 

Also, to further fasten the estimation process, parameters n threads, or n jobs can be used. This will 

allow us to use the computer processors more effectively, thus making the whole XGBoost model 

more efficient. 

The upper mentioned designation major and minor is defined by the author from the point of the 

specific task of the Bitcoin Close price prediction. For other tasks, some of the major 

hyperparameters may occur as minor, having little or no impact on the model, or contrary some 

minor may be major, for example for heavily unbalanced classification tasks, hyperparameter such as 

Max delta step or Scale pos weight would most likely become crucial.  

The second disadvantage of the XGBoost model is its susceptibility to overfitting, which, when not 

controlled (again by the appropriate setting of the above-mentioned hyperparameters, such as L1, L2 

regularization or cross validation), may lead to almost perfect performance on the training dataset, 

but modest performance on the test (or validation) dataset. The model would then try to explain 

most of the observations and variability at all costs, which in most cases causes loss of its general 

classification abilities on unobserved data. The model then resembles more of a memory than 

general model (Chen & Guestrin, 2016) 

https://xgboost.readthedocs.io/en/stable/python/python_intro.html


 

 

For the Bitcoin price prediction, we will use decision trees as weak learners and we will perform 

regression modelling to model/predict the Bitcoin close timeseries. 

2.2. Hyperparameter optimization principles 

As pointed out in the previous paragraph, XGboost hyperparameters should be optimized prior to 

the estimation of the final model, so as to achieve the best performance. However, several of its 

hyperparameters may take continuous values within a certain range, or even be theoretically 

unlimited (though its values will most likely be within an expected range). This gives us relatively 

wide parametric space, where the optimal parameters may hide. There exist several optimization 

techniques, which allow us to optimize the hyperparameters. Some of them bring more appealing 

results, while others computational efficiency (optimization time is reduced n-times). For this work, 

GridSearch optimization (which is a “Brute force” type of optimization) will be compared with 

Random Search and finally with Bayesian Optimization, which allows us to search the parameters 

space fast and find an optimal solution. The Grid Search and Random Search algorithms will be 

described briefly below, while Bayesian optimization will be explained more through roughly, as it 

will be also vital part of the prediction’s weights assignment. 

But firstly, we should specify, which of the above-mentioned parameters are to be optimized. What 

will be the possible range of each parameter value set for optimization and how we set the rest of 

the parameters and why.  

Table 1: Non-optimized hyperparameters 

Hyperparameter Value Commentary 

Base score 0.5 The base score, for regression task resembles the 
constant of the linear regression model. For regression 
should be set as the mean of the y feature. 

Booster gbtree We want to use the XGBboost based on the decision 
trees. 

Colsample family 1 As we have low number of features, there is no need for 
their subsampling. 

Grow policy Loss guide We want to split the nodes according to the loss change. 

Max delta step 0 Set to default value as we don’t have unbalanced 
sample. 

Minimal child weight 1 We do not want to limit the trees shape, as we have 
already limited the number of trees and we are 
optimizing the depth of the trees. 

Number of estimators 50 This value is set by the author based on his experience 
with the XGBoost model. The reason is to have such a 
number of estimators, that would ensure good 
regression performance of the model, at the same time 
feasible hyperparameters optimization and finally less 
chance of model overfitting. 

Objective squared loss Set for regression task. 

Random state 42 Not a hyperparameter as the others, but the random 
seed of the estimation is set to this value to ensure 
repeatability of the model estimation. 

And the following hyperparameters will be optimized within the range of values: 

Table 2: Optimized hyperparameters – Grid Search 

Hyperparameter Value 



 

 

Gamma [0, 0.1, 0.2, 0.4, 0.8, 1.6] 

Learning rate [0.01, 0.03, 0.06, 0.1, 0.2, 0.4, 0.7] 

Max depth [5, 6, 7, 8, 9, 11, 13, 14] 

Alpha [0.4, 0.8, 1.6, 6.4] 

Lambda [0.4, 0.8, 1.6, 6.4] 

For the Bayesian Optimization (BO) and Random Search (RS), the above parameters are optimized 

within the intervals defined by the range of each parameter grid. For the BO and RS, the log-uniform 

distributions are used for all the optimized hyperparameters except the Max depth parameter, which 

is the only non-continuous hyperparameter.  

Grid search algorithm 

The grid search optimization algorithm is considered as one of the easiest to implement and 

understand. However, this goes along with its computational inefficiency, especially for large number 

of parameters. Let’s assume parameter space 𝑉 = (𝑉1, 𝑉2, 𝑉3, … , 𝑉𝑚) over which we minimize the 

loss function of the XGBoost model. A basic approach to perform the Grid Search is to set vectors of 

lower and upper bounds  

𝑎 = (𝑎1, 𝑎, 𝑎3, … , 𝑎𝑚) 

𝑏 = (𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑚) 

(1) 

 

 

 

for each parameter 𝑉𝑖. Grid Search then divides each interval [ai, bi] by the n equally spaced points. 

This creates a total of nm possible grid points to be checked by the algorithm. It is obvious, that the 

number of evaluations needed for the algorithm rises exponentially with the increase of n and m. We 

may then lower the n, which will result in possibility that the optimal value of a parameter will be 

skipped, or we may reduce the number of optimized parameters m. Which may lead to totally non-

optimal value of a parameter. Clearly, the Grid Search is not an ideal method for hyperparameters 

optimization, but can serve as a Benchmark optimization, with which we may compare the others 

(Dufour & Neves, 2019). 

Random search algorithm 

Contrary to the Grid Search algorithm, we do not specify the grid. Instead, probability distribution for 

each parameter is specified, from which the random values of each parameter are drawn. We may 

specify the probability distribution, such as normal, but in most cases uniform or log-uniform 

distribution is used.  

The algorithm then, instead of using all the values combinations from the grid, randomly samples the 

parameters combination. The random search algorithm does not test all the available combinations 

of the parameters, and thus may not reach the best performing vector of parameters. But it was 

proven, that this algorithm gives good results while heavily optimizing the time spend when 

performing hyper optimization (Bergstra & Bengio, 2012). 



 

 

Figure 2: Random Search vs Grid Search 

 

Data source: (Bergstra & Bengio, 2012) 

2.3. Bayesian Optimization 

In the recent years, Bayesian statistics methods are on the rise, with Bayesian optimization algorithm 

among the most favourite Bayesian algorithms. In short, the Bayesian optimization idea is rather 

simple and intuitive: Choose the next input values to evaluate, based on the past results. What does 

this lead to? The algorithm is narrowing the search space towards the most promising values of the 

parameters. But still, to avoid possibility of a stuck in the local minimum, allows the search to diverge 

a bit. To do so, we need to define three important functions. First, an objective function, which is the 

function we want to optimize. This function is same as in the case of Random Search and Grid Search 

optimization. 

The following two function are specific for the Bayesian optimization and are the crucial parts for the 

efficient optimization provided by this algorithm: 

a) Surrogate Function 

b) Acquisition Function 

The Surrogate Function is nothing more than a probability model based on the past evaluation 

results of the objective function. For experimenting with different parameters, the model is used to 

simulate the function output instead of calling the actual costly function. In most cases the Gaussian 

Process Regression is used as surrogate, but for example random forest model may be used as well. 

The Acquisition function then decides whether the given sample is worth evaluation by the costly 

objective function or not. Mostly used acquisition function is so called “Expected Improvement” or 

EI. Though other functions, which can be used are “Probability of improvement” (PI) or “Lower 

Confidence Bound” (LCB).  The above-mentioned functions are the reason, why it beats other 

optimization algorithms. In most optimization tasks, the Exploration vs Exploitation strategy needs 

to be set. What does this mean? When doing the parameters space exploration, the algorithm may 

converge into the local maximum/minimum of the objective function, where the values of the 

function are high/low. But, in order to get out of the local extreme, the algorithm needs to have an 

option to continue with the exploration in different locations. The Exploration vs Exploitation 

strategy is performed by the acquisition function in an iterative manner. The surrogate function 

simulates protentional outputs of the objective function and the acquisition function decides which 

of them will be evaluated. Same as all the other Bayesian approaches, the algorithm is based on the 

Prior/Posterior concept. The initial prior points are given as an input for the initial run, and with each 

next step of the iteration is the prior enriched with the calculated posterior points.  

 



 

 

The Expected Improvement acquisition function can be defined by the following formula. It is 

important to mention, that the following function has closed form solution under the Gaussian 

process prior (Snoek, Larochelle, & Adams, 2012). 

𝐸𝐼(𝑥) = 𝔼 max(𝑓(𝑥) − 𝑓(𝑥+), 0) (2) 

Where 𝑓(𝑥+) is the value of the best sample given by the 𝑥+, which is 𝑥+ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖∈𝑥1:𝑡
𝑓(𝑥𝑖). 

Analytically under GP prior, EI is: 

 

 EI(x) = {
 (μ(x) − f(x+) − ζ)Φ(Z) + σ(x)ϕ(Z)                  if σ(x) > 0 

 0                                                                                   if σ(x) = 0
 

(3) 

 

where  

Z = {
   

μ(x)−f(x+)−ζ

σ(x)
               if σ(x) > 0

   0                                   if σ(x) = 0
 

 
 

(4) 

And 𝜇(𝑥),  𝜎(𝑥) are mean and standard deviation of the GP posterior, respectively.  Φ and 𝜙 are 

obviously CDF and PDF of the standard normal distribution respectively. The (𝜇(𝑥) − 𝑓(𝑥+) −

𝜁)Φ(𝑍) part of the equation (3) is stands for exploitation term, while the rest of the equation stands 

for exploration term. For more details see (Brochu, Cora, & de Freitas, 2010). 

For more details about Gaussian surrogate function see for example (Gramacy, 2020). 

2.4. Data 

For the trading model development, time-series of the Bitcoin daily metrics is used from 1th January 

2019 to 12th January 2022, where we split the dataset on the training, validation, and test parts by 

the following key: 

Training dataset: first 85% of the dataset 

Validation dataset: following 5% of the dataset 

Test dataset3: remaining 10% of the dataset 

 
3 The test dataset was further enhanced up to 25.3. 2022 to obtain longer testing period. 



 

 

Figure 3: Dataset 

 

Data source: own elaboration 

The reason for the validation part is to perform the optimization of the prediction’s weights into the 

final model on a separate dataset. This will ensure that the optimization of the weights will be done 

within the time frame, which was not used for the training of the XGBoost models, where the models 

may be overfitted.  

The test period will be used to perform the final trading strategy and evaluate the results. 

As we are going to use several basic technical indicators, we must calculate them first. The following 

technical indicators will be used as the features in the models:  

Volume 

Represents the traded amount during the given period (mostly one day). 

Close price lag 1 

Lagged Close price by one day. 

Close price lag 2 

Lagged Close price by two days. 



 

 

Figure 4: BTC price development 

 

Data source: own elaboration 

SMA 

Simple Moving Average indicator represent average of the asset prices during a given period (5, 10, 

15, 30). 

EMA 

Exponential Moving Average indicator is type of moving average, where the most recent 

observations have the highest significance. Contrary to the SMA, EMA reacts faster to new trends in 

the asset price. 



 

 

Figure 5: Technical indicators 

 

Data source: own elaboration 

MACD indicator and signal 

Moving average convergence divergence indicator is categorized as trend-following momentum 

indicator. This indicator represents the relationship between two exponential moving averages 

(EMA). The day parameter for both EMAs may be theoretically set arbitrarily, but in most 

applications 26-day period and 12-day period EMAs are calculated. The MACD is then calculated as 

follows  

𝑀𝐴𝐶𝐷 = 12𝑝𝑒𝑟𝑖𝑜𝑑𝐸𝑀𝐴 − 26𝑝𝑒𝑟𝑖𝑜𝑑𝐸𝑀𝐴, (5) 

Furthermore, the MACD signal line calculated as the 9-day EMA of the MACD values is calculated.  

In most basic technical trading strategies, the Buy signal is generated when the MACD signal line 

crossed the MACD from below and the sell signal is generated in the opposite situation.  



 

 

Figure 6: MACD technical indicator 

 

Data source: own elaboration 

RSI 

Relative strength index is a momentum indicator, which measures the magnitude of the recent price 

changes. RSI then indicates whether the market is overbought or oversold. I most cases, the RSI is 

represented as an oscillator. In most cases, the limiting values of RSI for overbought/oversold market 

indication are 70/30 or 80/20.  

𝑅𝑆𝐼 = 100 − (
100

1+
𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑔𝑎𝑖𝑛(𝑛)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑙𝑜𝑠𝑠(𝑛)

), (6) 

Where 𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑔𝑎𝑖𝑛(𝑛) function is average of all the positive changes in the price of the asset 

during the n-th day lookback period. Similarly, the 𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑙𝑜𝑠𝑠(𝑛) function is taken as the average 

of the negative changes.  



 

 

Figure 7: RSI technical indicator 

 

Data source: own elaboration 

Also, we must propose the evaluation metrics, which will serve in comparison of the trading 

strategies. 

First, and most simple, the Cumulative Profit of the strategy, will be the first metric. This metric is 

rather non-informative, as it does not include the risk of the investment. However, we still want to 

know the total Cumulative profit of our investment. 

Second will be widely known Sharpe and Sortino ratios, which already include risk and are often used 

to compare investment or trading strategies.  

Finally, we will also measure number of trades of our trading strategy, which will be further divided 

into profitable and non-profitable ones. Also, number of trading days will be measured, as the 

trading strategy has the option not to trade in a given day (short selling is not allowed), contrary to 

Buy & Hold strategy. Of course, number of trading days influences the Sharpe and Sortino ratios, as 

the standard deviation i.e., volatility is part of the calculation and for the trading strategy, only days 

when the algorithm holds the position are taken into account when calculating volatility. 

2.5. Proposed trading strategy 

With the above theory, we propose a following algorithmic trading strategy, which will be tested and 

compared with the Buy & Hold (BAH) strategy.  

First, we estimate six XGBoost models, where nth day value of the asset timeseries will be predicted. 

To explain the principle of nth day predicted value, we will introduce the example with the 1st day 



 

 

predicted value, where all the remaining predicted values will be estimated reciprocally. With the 

above-described dataset, the target variable for the 1st day prediction is following. For each set of 

features x at time t, the target variable of the model is the Close price of the asset at the time t+1, 

e.g., with the today’s information, we are predicting tomorrow’s Close price. In the same way, we 

may attempt to predict any future Close price values of the asset timeseries.  

For our trading strategy, we will estimate following vector of nth day predicted Close price values: 

{1,2,5,10,20,30}. Let’s remind briefly, that for each nth day prediction, unique model is estimated. 

Afterwards, we will get the final logarithmic return prediction as the weighted average price of all the 

six predictions compared to today’s close value. Someone might object, that the 30-day logarithmic 

return prediction should not be taken on an equal with 1-day logarithmic return, as we hold the asset 

longer and so we expect higher return. This is undoubtedly true, but as one of our major objectives in 

this paper is to optimize the weights of the predictions anyway, the optimization itself should handle 

this. As well as the deterioration in the prediction performance with the rising n of days, as we 

expect that further the prediction in the future is estimated, the higher the error rate of the model is 

(which is quite reasonable).   

Finally, with predicted logarithmic returns and optimized weights, we calculate expected logarithmic 

return indicating rise or decline in the asset’s price. The algorithmic strategy then goes with the 

following simple rules: 

1) If the final logarithmic return prediction is POSITIVE and the algorithm DOES NOT HOLD 
the asset from the previous days, it will BUY the asset. 

2) If the final logarithmic return prediction is POSITIVE and the algorithm DOES HOLD the 
asset from the previous days, it will HOLD the asset for another day. 

3) If the final logarithmic return prediction is NEGATIVE and the algorithm DOES HOLD the 
asset from the previous days, it will SELL the asset. 

4) If the final logarithmic return prediction is NEGATIVE and the algorithm DOES NOT HOLD 
the asset from the previous days, it will DO NOTHING. 

Where Short selling is not allowed. 

What is relatively clear is the fact, that even with the very precise algorithmic trading strategy, for 

the asset, which will be bullish most of the time, when the backtesting of the strategy takes place, 

the BAH strategy may generate better results (and vice versa for bear asset, where BAH will be non-

profitable). This is due to the several reasons, existence of the bid-ask spread, fees for each trade and 

an error rate (even the best model has some). That is why we need an asset, which is very volatile 

(which cryptocurrencies in general are). Next, the selected backtesting period, its start and end date 

respectively, heavily influence the result of both BAH and algorithmic strategy.  

Also, during a practical deployment of the strategy, there should be several hard KOs rules in order 

not to sustain heavy losses. For example, when the number of non-profitable trades exceeds a 

threshold based on the backtesting during a certain period (more specifically the ratio of profitable 

and non-profitable trades per unit of time). Or, when the prediction error during the past days 

strongly surpasses the error metric (RMSE, MSE) indicating deteriorative performance of the model. 

Of course, there may exist other rules, but as we are aiming primarily on the comparison of raw 

strategies and the advantages of the XGBoost and Bayesian optimization, these will not be included 

in the backtesting (Chan, 2009). 

It is important to mention, why we estimate six models in total. The reason is simple, we want to 

somehow smooth the trading strategy, with the long-term models serving rather than an absolute 



 

 

value prediction as a state prediction (a sort of analogy to a Markov Switching model). We expect 

that this will force the strategy to make less trades and hold the asset longer, saving the costs per 

trade (ignoring small within or one day fluctuations). Nevertheless, as the final weights will be 

decided by the optimization algorithm, it may happen that the final strategy will be guided primarily 

by short term one- or two-days predictions, without the smoothing effect. 

3. Results and Discussion 

All the calculations and model estimations are performed in the Python programming language, 

within its Jupyter and PySpark interpreters.  

3.1. Comparison of hyperparameters optimization algorithms  

Before we will construct the XGBoost models and the trading model itself, let’s compare the possible 

XGBoost optimization techniques. The comparison will be performed on the first estimated XGB 

model, with the 1st day prediction target. All three algorithms were tested on the same dataset, with 

the same combination of optimized hyperparameters and the same values of the non-optimized 

ones. The following table shows the Mean-squared error (MSE) metric on test dataset and so-called 

wall-time of each algorithm run. Wall time is equal to the elapsed time in the real world (there exists 

also CPU time or system time).  

Table 3: Optimization algorithms - comparison4 

Algorithm MSE test Wall time 

Grid Search 3447.1 45min 7s 

Random Search 3725.2 1min 2s 

Bayesian optimization 3273.3 6min 8s 

As can be seen, the difference between the algorithms is tremendous and fulfils our expectations 

both from the point of the prediction accuracy and computational power demand. The random 

search finds its optimal parameter combination incredibly fast. The Grid Search algorithm is more 

accurate than Random Search, but it takes him long time to converge, even though we are optimizing 

rather small number of hyperparameters in quite narrow intervals. Finally, as expected, Bayesian 

optimization finds the most suitable combination of hyperparameters (the MSE is almost 12% lower 

than in case of Random Search) within relatively short time, compared to Grid Search (it takes more 

than five times less time than Grid Search). We may conclude that not only optimization of the 

hyperparameters is extremely important for XGBoost performance as such, but also the selected 

optimization algorithm may improve the performance of the model significantly and at the same 

time shorten the necessary time for the optimization (the difference in wall time between the GS and 

BO algorithms would even increase in case of more hyperparameters optimized). 

For visual comparison of the 1-day prediction XGboost models on the validation and test data 

combined, see the graphs below.  

 
4 For both Bayesian Optimization and Random Search, 50 iteration steps were set as an upper limit to be 
comparable. 



 

 

Figure 8: Bayesian optimization 

 

Data source: own elaboration 



 

 

Figure 9: Random Search optimization 

 

Data source: own elaboration 



 

 

Figure 10: Grid Search optimization 

 

Data source: own elaboration 

It is important to mention, that the hyperparameter optimization was done on the validation sample 

as well as the strategy optimization, whereas the training of all the models was performed on the 

training dataset. This should ensure that the model would not be highly overfitted. 

3.2. Comparison of Buy & Hold strategy and trading strategy with multiple 

weights vectors 

Now, we may estimate six separate XGBoost models with Bayesian optimized hyperparameters (each 

XGBoost has its own set own hyperparameters) and build the final trading strategy. As mentioned 

above, we will calculate the proxy of the future close price, given by our model predictions and 

consequently proxy for the nth day logarithmic return with the following logic: 

𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+𝑛 = ln (
𝑋𝐺𝐵𝑝𝑟𝑒𝑑𝑛

𝐶𝑙𝑜𝑠𝑒𝑡
) (7) 

where each nth day prediction  𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+𝑛, given by a separate model, must have certain 

weight 𝑤𝑛, which determines the total effect of the 𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+𝑛 on the 𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦prediction. 

We calculate the proxy for logarithmic return as 



 

 

𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 = 𝑤1𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+1 + 𝑤2𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+2 + 𝑤5𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+5 +

𝑤10𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+10 + 𝑤20𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+20 + 𝑤30𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+30 
(8) 

Where the 𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦 𝑡+𝑛 is given by the previous formula and  Closet is realized Close value at 

time 𝑡. The 𝐿𝑜𝑔𝑟𝑒𝑡𝑝𝑟𝑜𝑥𝑦  value is then the input into trading strategy described previously in the 

chapter Chyba! Nenalezen zdroj odkazů.. To properly test all the possibilities of the trading strategy, 

and to reveal its true maximum potential, we will test the following vectors of weights. 

Table 4: Trading strategies 

Trading strategy Weights Comment 

0 / Buy and Hold strategy as the benchmark 

1 Equal weights Each prediction has equal weight of 1/6 

2 MSE proportional weights Each weight is given inversely by the MSE of 
the XGBoost model. This means, that the 
most accurate model has the highest weight 
and vice versa. 

3 Bayesian optimized weights – Total profit All the weights are optimized within separate 
Bayesian optimization. The optimized 
criterion is total profit of the strategy. 

4 Bayesian optimized weights – Sharpe 
ratio 

All the weights are optimized within separate 
Bayesian optimization. The optimized 
criterion is the Sharpe ratio of the strategy. 

Overall, we are going to test 4 trading strategies, based on the same XGBoost predictions, plus the 

B&H as benchmark. Our expectation is that the trading strategies with equal weights will be the least 

efficient both from the point of total profit and Sharpe or Sortino ratio. Also, we expect the Bayesian 

optimized strategy with Sharpe ratio taken as the optimization criterion as the most efficient. In the 

Table 7, the total profit, Sharpe ratio and other observed criteria (number of trades, trading days 

etc.). We expect all the algorithmic strategies to be more efficient than the B&H strategy. The 

following table shows the MSE weights derived from the MSE of the XGBoost models. 

Table 5: MSE weights for the final trading strategy 

Model MSE MSE-1 Sum MSE-1 Weight 

XGB n1 3273.3 0,000305502 0,001011094 30,2% 

XGB n2 4109.6 0,000243333 24,1% 

XGB n5 6358.6 0,000157267 15,6% 

XGB n10 8753.8 0,000114236 11,3% 

XGB n20 9418.5 0,000106174 10,5% 

XGB n30 11822.9 8,45816E-05 8,4% 

Table 6: BO weights for the final trading strategy 

Model BO - Profit BO – Sharpe ratio 

XGB n1 9.78% 26.78% 

XGB n2 14.17% 14,69% 

XGB n5 0.51% 6,75% 

XGB n10 23.55% 0,55% 



 

 

XGB n20 43.75% 4,85% 

XGB n30 8.23% 46,36% 

 

For the trading strategy, we assume we have exactly 1 unit of any currency/portfolio at the beginning 

of the trading period. This means that the hypothetical value of total profit 1.1 indicates that the 

value of the portfolio has risen by 10 % over the trading period.  

Table 7:  Performance of the trading strategies 

Trading 
strategy 

Strategy 
name 

Total 
Profit 
Gross 

Sharpe 
ratio Net5 

Sortino 
ratio 

No. of 
trades 

No. profitable 
trades 

No. loss 
trades 

No. trading 
days 

0 B&H 1.511 0.913 1.377 / / / 156 

1 Equal Weights 1.322 1.798 1.771 5 3 2 74 

2 MSE Weights 1.195 1.148 1.144 5 4 1 74 

3 

BO weights – 
Profit 
optimized 

  

1.623 3.169  2.891 4 4 0 73 

4 

BO weights -  

Sharpe ratio 
optimized 

 1.274  1.544  1.547  4  4  0 73 

 

The results shown in the Table 7 show that from the point of total profit, both Bayesian Optimized 

strategies beat the B&H on the test dataset. This is not surprising, because the weights for the 

strategies were optimized on the valid sample to maximize the profit and Sharpe ratio. With all the 

trades profitable and the highest Sharpe ratio, the BO Sharpe ratio strategy is by far the best one. 

The second BO trading strategy (BO Profit optimized) gives also all the trades profitable, but overall 

performs worse than the BO Sharpe optimized strategy. The MSE weighted trading strategy performs 

the worst. Along with the final BO weights in the Table 6, it is shown, that the XGBoosts, which 

predict the more distant Close value have higher MSE, are more suitable to be used in the final 

strategy than the short-term ones. This proves our expectations, that the longer-term predictions will 

smooth the trading strategy from the short-term fluctuation and cause the trading strategy to trade 

less with longer trades.  

To further verify the robustness of the trading strategy, we create 10 000 random trades vectors, 

each with the six trades such as our final BO Sharpe optimized strategy. For each of the random 

trades vector, we will calculate the Profit and Sharpe ratio. Afterwards, we create the empirical 

multivariate distribution given by the Profit and Sharpe ratio univariate distributions and examine, 

whether our strategy is in fact rare, which would indicate non-randomness of our strategy, or 

whether our final strategy combination of Profit and Sharpe ratio may be easily achieved by a 

random guess. 

 
5 The Net Profit is calculated with the fees and spread of the BTC/USD included, based on the Bitfinex Crypto 
Exchange. The fee per trade is 0.1% of the traded volume and the average spread during the trading period was 
0.004%. The average BTC/USD spread on the biggest Crypto Exchanges ranges from 1.5 to 20, with Bitfinex on 
the lower side with 1.9 average spread during the trading period. 



 

 

Figure 11: Empirical multivariate distribution of the simulations for the original trading period – BO Sharpe 

strategy 

 

Data source: own elaboration 

Plus, the Cumulative returns of both the B&H strategy and our trading strategy can be seen in the 

graph below. The portfolio initianl value is set to 100k of the fiat currency units.  

  



 

 

Figure 12: Cumulative returns of the B&H and trading strategy – BO Sharpe optimized  

Data source: own elaboration 

                                        

    

    

    

    

    

    
   

          



 

 

Figure 13: Cumulative returns of the B&H and trading strategy – BO Profit optimized  

 

Data source: own elaboration 

As can be seen in the graphs above6, our trading strategy marked by the blue dot is outside of the 

90% multivariate empirical confidence interval, which indicates that our combination of Profit and 

Sharpe ratio is not easily achievable by a random guess.  

Finally, to obtain longer (and thus more robust) testing period, the testing window was additionally 

extended from original ending date 12.1.2022 up to 25.3. 2022, with additional 66 days for potential 

trading strategy performance testing.  The results and graphs as in case of the original trading period 

can be seen below, with additional cumulative returns for both the B&H strategy and our final 

trading strategy.  

Table 8: Performance of the trading strategies – extended testing period 

Trading 
strategy 

Strategy 
name 

Total 
Profit 
Gross 

Total 
Profit 

Net 

Sharpe 
ratio 

Sortino 
ratio 

No. of 
trades 

No. profitable 
trades 

No. loss 
trades 

No. 
trading 
days 

0 B&H 0.984 / -0.076 -0.107 / / / 222 

1 Equal Weights 1.161 1.135 0.736 -0.691 11 8 3 96 

2 MSE Weights 1.108 1.083 0.502 -0.607 11 7 4 96 

3 
BO weights – 

Profit 
optimized 

1.372 1.350 1.717 -0.079 8 6 2 83 

4 

BO weights - 

Sharpe ratio 
optimized 

1.648 1.602 2.289 1.273 13 11 2 101 

 
6 The empirical distributions are estimated from all 10 000 simulations, however the dots are based only on the 
part of the dataset, so the graphs are concise. 

                                        

    

    

    

    

    

    
   

          



 

 

Figure 14: Empirical multivariate distribution of the simulations for the extended trading period – BO Sharpe 

strategy  

 

Data source: own elaboration 

Figure 15: Cumulative returns of the B&H and trading strategy – BO Sharpe optimized (extended trading 

period)  

 

Data source: own elaboration 

 

 

                                                        

   

   

    

    

    

    

    

    
   

                



 

 

 

Figure 16: Cumulative returns of the B&H and trading strategy – BO profit optimized (extended trading 

period)  

 

Data source: own elaboration 

We can see that our strategy (especially the BO Sharpe optimized one) continued with its top 

performance. Also, we can see that both trading strategies stopped the trading slightly before the 

peak of the BTC price during autumn 2021. This is most likely caused by the previously mentioned all 

time high of the BTC price, where the XBoost struggle with the precise price prediction. On the other 

hand, the strategy correctly revealed the fall in the BTC price and waited with the trading until the 

rise in January and February 2022.  

The enhanced trading window along with the multivariate distribution testing proved the potential 

good performance of the trading strategy.  

4. Conclusion 

Despite its complexity and the indisputable fact, that XGBoost model remains huge black box, it was 

shown that this model may be successfully incorporated into the thriving trading model, compared to 

standard B&H strategy, especially in case of highly volatile asset. Though, it has its limitations, such 

as high number of hyperparameters to be optimized, propensity to overfitting and inferior 

extrapolation performance, it proves to be one of the most promising ML algorithm these days, even 

during the COVID-19 pandemic period.  

                                                        

   

   

    

    

    

    

    

       

                



 

 

It was shown that the hyperparameters optimization techniques is vital and fundamental part of the 

ML model building, which can immensely improve its performance. With Bayesian techniques 

showing very promising results, proving increasing importance of this part of the statistics in the 

recent years. 

The Sharpe and Sortino ratios, total profit, show that the final trading strategy, with Bayesian 

optimized weights of the XGBoost predictions is very promising and may offer benefits in comparison 

with B&H strategy, especially for high volatility cryptocurrencies such as BTC.  Even though, there 

was used low number of simple technical indicators as features for the XGBoost models, the 

performance of the models was sufficient in terms of prediction power, also proved on the enhanced 

trading period.  Also, as the fees and spreads on most of the important Crypto exchanges are not 

high, the application of the algorithmic strategy may not be limited by them. The biggest drawback of 

this model is the extrapolation problematics of the Decision Tree based XGBoost models. The asset 

must undergo an all-time peak in the past, specifically within the training period, in order for the 

model to learn the full scale of the potential values of both, the target variable and the input 

features. This disqualifies the applicability of the model for the majority of the stocks, which are in 

most periods rising and thus reaching new hights. The model may be applied to fiat currency pairs, 

such as USD/EUR etc. but these pairs lack the high volatility of the cryptocurrencies. Intuitively, the 

solution of this problem seems to be the change of the target variable, from the non-stationary Close 

value to stationary Log-returns or difference Close value. However, the reason for the target variable 

being the Close value is the existence of the memory within the time-series, which would not be, 

most likely, present within the stationary time-series of the log-returns, not allowing us to predict the 

Log-returns in the more distant future. Given by the previously mentioned problematics, the only 

feasible solution of the problem is, from our point of view, application of the fractionally differenced 

timeseries which solves the non-stationarity problem and at the same time avoids obliteration of the 

long-term memory of the time-series. 

For further research, it may be worth to attempt to include fractional differencing, more complex 

indicators, such as entropy, fractal dimension or Hurst exponent as well as to combine the ML 

algorithms with more traditional statistical approaches, such as Markov Switching models, State 

space models. Or take even more advanced ML approach, for example with Gated Bayesian Neural 

Networks, which can simulate the asset behaviour in multiple states (high – low volatility, bear-bull 

market etc.) and do not suffer from the extrapolation issue such as XGBoost in this paper does. 
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6. Appendices 

6.1. Appendix 1:  XGBoost variables PDP and Feature importance plots 

Feature importance plots for each XGboost. 

Figure 17: Feature importance graphs for each XGBoost model  
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