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A Comparison of Neural Networks and Bayesian 

MCMC for the Heston Model Estimation  

(Forget Statistics – Machine Learning is Sufficient!) 

Jiří Witzany1, Milan Fičura2 

 

Abstract 

The main goal of this paper is to compare the classical MCMC estimation method with a 

universal Neural Network (NN) approach to estimate unknown parameters of the Heston 

stochastic volatility model given a series of observable asset returns. The main idea of the NN 

approach is to generate a large training synthetic dataset with sampled parameter vectors and 

the return series conditional on the Heston model. The NN can then be trained reverting the 

input and output, i.e. setting the return series, or rather a set of derived generalized moments 

as the input features and the parameters as the target. Once the NN has been trained, the 

estimation of parameters given observed return series becomes very efficient compared to the 

MCMC algorithm. Our empirical study implements the MCMC estimation algorithm and 

demonstrates that the trained NN provides more precise and substantially faster estimations of 

the Heston model parameters. We discuss some other advantages and disadvantages of the two 

methods and hypothesize that the universal NN approach can in general give better resu lts 

compared to the classical statistical estimation methods for a wide class of models.  

AMS/JEL classification: C45, C63, G13 

Keywords: Heston model, parameter estimation, neural networks, MCMC 

1. Introduction 

Recently, there has been a considerable interest in machine learning methods applications to 

financial models calibration, i.e. unknown parameter estimation based on observable market 

data. For example, in case of advanced stochastic volatility models used for valuation of options 

and other derivatives, it is important to perform a relatively fast calibration based on available 

plain vanilla option prices or other market information. It turns out that the calibration 

performed using classical statistical or optimization methods is often substantially slower 

compared to a calibration based on neural networks (see e. g. Horvath et al., 2021, or Cao et al., 

2022). Another approach to the calibration, in case of unavailable option prices, is to estimate 
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the model parameters based on available historical returns of the underlying assets. Hutchinson 

et al. (1994) in their seminal paper tested this approach on the relatively simple Black-Scholes 

model. However, in case of stochastic volatility or jump models, this is known to be a difficult 

estimation problem since the stochastic volatility (and/or jump occurrence) represent latent 

state variables that need to be estimated, or integrated out, at the same time with the 

parameters’ estimation (Shephard, 2004). Witzany and Ficura (2023) proposed a neural network 

(generalized) moment-based approach to the Heston model calibration and option valuation 

based on historical underlying asset prices. The trained neural network (NN) models showed 

promising results but with estimation errors relatively large compared to the classical calibration 

using quoted option prices (unavailable in this case). The estimation error can be generally 

decomposed into the irreducible error due to limited information content of the input in the 

form of an observed returns dataset and to the error due to the estimation method itself. The 

main motivation of this paper is to implement the Bayesian MCMC method for the Heston model 

in order to show that the former type of error represents the key contribution to the overall 

estimation error, and that the neural network estimation approach, in fact, performs quite well. 

This can be done looking on the posterior distribution of the parameters conditional on the input 

data, or in a simpler way, comparing the estimation error of MCMC point estimates and the NN 

estimates. 

The motivation of this paper can be actually formulated in more general terms. A key problem 

of statistics is to analyze collected data by describing an appropriate probabilistic data-

generating model (Figure 1) with parameters that are somehow estimated from the observed 

data. The classical estimation approaches include the method of moments (MM), the 

generalized method of moments (GMM), the maximum likelihood estimation (MLE), or Bayesian 

methods such as the Markov Chain Monte Carlo (MCMC) with Gibbs, Metropolis-Hastings, or 

Particle Filter sampling (see e.g. Lynch, 2007, Johannes and Polson, 2009, or Speekenbrink, 

2016). The Bayesian MCMC approach turns out to be superior in case of latent state-space 

models like the stochastic volatility models. However, the implementation of the Bayesian 

estimation methods requires a tedious analysis of the marginal densities, proposal densities, 

and prior distributions. In addition, the estimation procedure is usually quite slow and 

computationally-intensive with certain level of uncertainty regarding the speed of convergence 

of the sampled chain to the theoretical distribution. 

Figure 1 - A data generating model scheme 

 

The machine learning (NN) based model estimation offers a relatively straightforward approach 

where the NN learns the relationship between the observed data and the set of parameters Θ 

on a large synthetically generated dataset. A possible architecture of a feed-forward NN with a 

fixed number of features is outlined in Figure 2. In this case, the general dataset can be very 

large and it needs to be transformed to a limited set of extracted characteristics 𝐦 = 〈𝑚𝑖〉 that 

can be called “generalized moments” in an analogy with GMM. The training dataset is obtained 

by sampling the model parameters Θj from an appropriate distribution, sampling the dataset of 

a given size and conditional on the model (Figure 1), and finally calculating the generalized 

Model
Model parameters 
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moments 𝐦𝑗. The synthetic dataset {(𝐦𝑗,Θj); 𝑗 = 1, … , 𝑁} is then used for training of the NN 

as outlined in Figure 2. The advantage of this approach is that the training dataset can be as 

large as we wish and computational resources allow. Moreover, the NN training procedure, 

which might be computationally more intensive, can be implemented offline, while the trained 

NN itself, used for model estimation, would be usually very fast.  

Figure 2 - A neural network estimating model parameters from historical return moments 

 

We will show that in case of the Heston model the NN parameter estimation approach gives 

quite good results compared to the MCMC approach. Note that NN estimation is very flexible 

and straightforward since it does not require a decomposition of the data-generating model into 

marginal densities etc. as in case of MCMC. However, one can object that in case of the Figure 

2 NN architecture we need to manually find and define an appropriate set of generalized 

moments requiring a deeper analysis of the model. This part of the process can be eliminated 

employing other architectures such as the Convolutional or Long-Short-Term-Memory (LSTM) 

NN where the full dataset can be used on the input of the network. We hypothesize that this 

universal approach is quite efficient and applicable to a wide class of models, in particular to the 

more complex latent state variable models that are difficult to estimate using classical methods. 

The paper is organized as follows: after the introduction, Section 2 describes the MCMC method 

applied to the Heston model, Section 3 specifies the NN training dataset construction, Sect ion 4 

reports and discusses the empirical results, and Section 5 concludes.  

2. MCMC Estimation of the Heston Model 

2.1. The Heston Model 

The Heston (1993) model describing a price process 𝑆 (or log-price 𝑠 = ln 𝑆 process) in 

continuous time with stochastic volatility (variance) 𝑉 can be described by the following 

stochastic differential equations  

𝑑𝑠 = 𝜇𝑑𝑡 + √𝑉𝑑𝑊1 , 

𝑑𝑉 = 𝜅(𝑉𝐿𝑇 − 𝑉)𝑑𝑡 + 𝜎𝑉√𝑉𝑑𝑊2, 

𝑐𝑜𝑟𝑟(𝑑𝑊1 , 𝑑𝑊2) = 𝜌. 

The stochastic variance will stay (almost surely) positive provided the Feller (1991) condition 

2𝜅𝑉𝐿𝑇 > 𝜎𝑉
2 is satisfied. 

Since the prices and returns are in reality observed over 𝑇 discrete time intervals of length Δ𝑡 

(e.g. one trading day, i.e. Δ𝑡 = 1/250) we discretize the model as follows: set 𝑦𝑖 = 𝑠(𝑖Δ𝑡) −

𝑠((𝑖 − 1)Δ𝑡), 𝑖 = 1, … . , 𝑇 and 

𝑣𝑖 = 𝛼 + 𝛽𝑣𝑖−1 + 𝛾√𝑣𝑖−1𝜀𝑖
𝑉  , 

𝑦𝑖 = 𝑚 + √𝑣𝑖𝜀𝑖 , 
(1) 

Neural 
Network

Data (generalized) 

moments 

Model parameters 
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𝜀𝑖~𝑁(0,1), 𝜀𝑖
𝑉~𝑁 (0,1),  𝑐𝑜𝑟𝑟(𝜀𝑖−1, 𝜀𝑖

𝑉) = 𝜌  for 𝑖 ≥ 2,  i.e. 

𝜀𝑖
𝑉 = 𝜌𝜀𝑖−1 + √1 − 𝜌2𝑢,  𝑢~𝑁(0,1), 𝑖𝑖𝑑 . 

 

The relationship between the continuous and discrete time model parameters and the latent 

stochastic volatility is as follows: 𝑚 ≈ 𝜇Δ𝑡, 𝑣 ≈ 𝑉Δ𝑡 , 𝛽 ≈ 1 − 𝜅Δ𝑡 , 𝛼 ≈ 𝜅𝑉𝐿𝑇Δ𝑡2 , and 𝛾 ≈
𝜎𝑉Δ𝑡. Note that 𝛾 must satisfy the Feller condition: 2𝛼 > 𝛾2. 

Therefore, given observed returns 𝒚 = 〈𝑦1, … , 𝑦𝑇〉, the main goal is to estimate the vector of 

parameters Θ = 〈𝑚, 𝛼, 𝛽, 𝛾,  𝜌〉. An auxiliary goal might be to estimate the latent variances 𝒗 =
〈𝑣1 , … , 𝑣𝑇〉, or at least the last one, i.e. 𝑣𝑇 , that allows us to analyze and simulate the future 

development of the return and volatility processes.  

2.2. The MCMC Estimation Algorithm 

In the Bayesian approach, the unknown parameters and state variables are estimated based on 

the equation  

𝑝(Θ, 𝐯|𝐲) ∝  𝐿(𝐲|𝐯, Θ) × 𝑝𝑟𝑖𝑜𝑟(𝐯, Θ). (2) 

 

The likelihood function is given by the discrete-time Heston model (1) is expressed as a product 

of bivariate normal densities of the pairs 〈𝑣𝑖 , 𝑦𝑖−1〉 conditional on 𝑣𝑖−1 for 𝑖 = 2, . . , . 𝑇, and of 

the univariate normal density of 𝑦𝑇 conditional on 𝑣𝑇 (as the value of 𝑣𝑇+1 is unknown), i.e. 

𝐿(𝐲|𝐯, Θ) = 𝜑(𝑦𝑇 ; 𝑚, 𝑣𝑇
) ∏ 𝜑2 (〈𝑣𝑖 , 𝑦𝑖−1

〉; 〈𝛼 + 𝛽𝑣𝑖−1, 𝑚〉, (
𝛾 2𝑣𝑖−1 𝜌𝛾𝑣𝑖−1

𝜌𝛾𝑣𝑖−1 𝑣𝑖−1

))

𝑇

𝑖=2

. 

 

(3) 

The multivariate prior distribution in (2) is specified below based either on noninformative or 

appropriate wide distributions reflecting some basic limitations that we need to put on the 

parameters. The main principle of the MCMC algorithm is to iteratively sample the parameters 

and latent variables one-by-one (or in blocks) conditional on all the other already sampled 

parameters and variables from the conditional distributions that are typically simpler than the 

joint posterior distribution given by (2). According to Clifford-Hammersley theorem (see e.g. 

Johannes and Polson, 2009) the sequence (chain) of sampled parameters and variables 

converges to the distribution given by (2). It should be noted that there are different approaches 

to the HM Bayesian estimation that can be found in literature (see e.g. Frühwirth-Schnatter and 

Sögner, 2003), but our goal is to propose a rather straightforward MCMC estimation algorithm 

that can be empirically compared with the NN approach. 

The MCMC sampling is typically performed by the Gibbs sampler if the marginal distribution has 

a known parametric form, or otherwise, typically, by the Metropolis-Hastings accept-reject 

sampler based on a proposal distribution. We will use the latter possibility since the  HM marginal 

distributions are difficult or impossible to find in parametric form due to relative complexity of 

the bivariate densities in the likelihood function (3). The following summarize the individual 

MCMC sampling steps of the unknown parameters Θ = 〈𝑚, 𝛼, 𝛽, 𝛾,  𝜌〉 and volatilities 𝒗 =

〈𝑣1 , … , 𝑣𝑇〉 given observed returns 𝐲 = 〈𝑦1 , … , 𝑦𝑇〉: 

(i) Sampling of the mean return 𝑚, given 𝐲 = 〈𝑦1, … , 𝑦𝑇〉 and 𝐯 = 〈𝑣1, … , 𝑣𝑇〉 , 

based on 𝑝(𝑦𝑖|𝑚, 𝑣𝑖) = 𝜑(𝑦𝑖; 𝑚, 𝑣𝑖), and with the non-informative prior sample the proposal: 
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𝑞(𝑚|𝐲, 𝐯) = 𝜑 (𝑚;
𝐵

𝐴
,
1

𝐴
) , where 

𝐴 = ∑
1

𝑣𝑖

𝑇

𝑖=1

, 𝐵 = ∑
𝑦𝑖

𝑣𝑖
 .

𝑇

𝑖=1

 

The sampled value 𝑚 cannot be used as in the Gibbs sampler since the proposal density does 

not consider the leverage correlation 𝜌. Therefore, we need to accept/reject the proposal 𝑚1 

against the previous value 𝑚0 with the probability min (𝑅, 1), where  

𝑅 =
𝑝(𝑚1| … )𝑞(𝑚0|… )

𝑝(𝑚0|… )𝑞(𝑚1| … )
 , 

𝑝(𝑚| … ) = 𝐿(𝐲|𝐯, Θ), Θ = 〈𝑚, … 〉, 

𝑞(𝑚| … ) = 𝜑 (𝑚;
𝐵

𝐴
,
1

𝐴
). 

(ii) Sampling of the SV equation parameters 𝛼, 𝛽, 𝛾, given 𝐯 = 〈𝑣1 , … , 𝑣𝑇〉 , 

based on 𝑝(𝑣𝑖|𝛼, 𝛽, 𝛾, 𝑣𝑖−1) = 𝜑(𝑣𝑖; 𝛼 + 𝛽𝑣𝑖−1, 𝛾2𝑣𝑖−1), and with the non-informative prior 

sample from the proposal: 

𝑞(𝛼|. . . ) = 𝜑 (𝛼;
𝐵

𝐴
,
1

𝐴
) , where 

𝐴 = ∑
1

𝛾2𝑣𝑖−1

𝑇

𝑖=2

, 𝐵 = ∑
𝑣𝑖 − 𝛽𝑣𝑖−1

𝛾2𝑣𝑖−1
 .

𝑇

𝑖=2

 

And, again, accept/reject based on 𝑝(𝛼| … ) = 𝐿(𝐲|𝐯, Θ) and 𝑞(𝛼|. . . ) = 𝜑 (𝛼;
𝐵

𝐴
,

1

𝐴
). 

Similarly, accept/reject the proposal for 𝛽: 

𝑞(𝛽|𝛼, 𝛾, 𝐯) ∝ 𝜑 (𝛽;
𝐵

𝐴
,
1

𝐴
) × 𝑝𝑟𝑖𝑜𝑟(𝛽), where 

𝐴 = ∑
𝑣𝑖−1

𝛾2

𝑇

𝑖=2

, 𝐵 = ∑
𝑣𝑖 − 𝛼

𝛾2𝑣𝑖−1
 .

𝑇

𝑖=2

 

In this case we will use an informative 𝑝𝑟𝑖𝑜𝑟(𝛽) = 𝜑(𝛽; 0.985,0.022) since in case of daily data 

the parameter 𝛽 ≈ 1 − 𝜅Δ𝑡  is expected to be around 0.99.  

And finally, accept/reject the proposal for 𝐺 = 𝛾2, with the Jeffreys prior 𝑝(𝐺) ∝ 1/𝐺 : 

𝑞0(𝐺|𝛼, 𝛽, 𝐯) ∝ 𝐼𝐺 (𝐺;
𝑇 − 1

2
, 𝐶) , where 

𝐶 = ∑
(𝛼 − (𝑣𝑖 − 𝛽𝑣𝑖−1))

2

2𝑣𝑖−1

𝑇

𝑖=2

 . 

In this case, we need to use 𝑞(𝛾| … ) ∝ 𝑓𝐼𝐺 (𝐺;
𝑇−1

2
, 𝐶) ⋅ 𝛾. 

(iii) Sampling of the correlation parameter 𝜌 given 𝑚, 𝛼, 𝛽, 𝛾, 𝐲 = 〈𝑦1, … , 𝑦𝑇〉 , and  𝐯 =

〈𝑣1 , … , 𝑣𝑇〉.  
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Calculate 𝜀𝑖 and 𝜀𝑖
𝑉 for 𝑖 = 2, … , 𝑇 from the model (1) equations, and calculate the sample 

correlation 𝜌̂ = 𝑐𝑜𝑟𝑟(𝜀, 𝜀𝑉). For sampling use the Fisher transformation 𝐹(𝜌) = 𝑎𝑟𝑡𝑎𝑛ℎ(𝜌), i.e. 

sample 𝑥~𝑁(𝑎𝑟𝑡𝑎𝑛ℎ(𝜌)̂,
1

𝑇−4
) and set the proposal 𝜌1 = tanh(𝑥). 

Finally, use the Metropolis-Hastings accept-reject algorithm choosing between the previously 

sampled correlation estimate 𝜌0 and the new proposal 𝜌1, which is accepted with probability 

min (𝑅, 1), where  

𝑅 =
𝑝(𝜌1| … )𝑞(𝜌0| … )

𝑝(𝜌0|… )𝑞(𝜌1 | … )
 , 

𝑝(𝜌| … ) = 𝐿(𝐲|𝐯, Θ), 

𝑞(𝜌| … ) = 𝜑 (𝑎𝑟𝑡𝑎𝑛ℎ(𝜌); 𝑎𝑟𝑡𝑎𝑛ℎ(𝜌̂),
1

𝑇 − 4
)

1

1 − 𝜌2 . 

Sampling of the stochastic variance 𝑣𝑖  given 𝑣𝑖−1 , 𝑣𝑖+1 , 𝑦𝑖 , 𝑦𝑖+1 and the SV equations 

parameters 𝑚, 𝛼, 𝛽, 𝛾, 𝜌: 

Estimate the expected variance using a naïve GARCH-like model, e.g. as (for 1 < 𝑖 < 𝑇, 

analogously for 𝑖 = 1, or 𝑖 = 𝑇)  

𝐸𝑉 = 𝑤
𝑣𝑖−1 + 𝑣𝑖+1

2
 + (1 − 𝑤)(𝑦𝑖 − 𝑚)2,  

where 𝑤 is a GARCH-like weight, for example 0.95. Then sample from the gamma distribution 

with the mean 𝐸𝑉 and sampling standard deviation 𝑆𝑉 = 𝛾√𝑣𝑖−1, i.e.  

𝑞(𝑣| … )~𝐺𝑎𝑚𝑚𝑎(𝑣; 𝑎, 𝑏), where 𝑏 =
𝑆𝑉2

𝐸𝑉
 and 𝑎 =

𝐸𝑉

𝑏
. For 𝑖 = 1 and 𝑖 = 𝑇 the proposal must 

be modified based only on the single neighboring variance. Finally, use Metropolis-Hastings with 

the acceptance ratio 

𝑅 =
𝑝(𝑣1| … )𝑞(𝑣0| … )

𝑝(𝑣0|… )𝑞(𝑣1 | … )
 , 

where  𝑝(𝑣|. . ) ∝  𝐿(𝐲|𝐯, Θ) with the remark that only the two (or one if 𝑖 = 1 or 𝑖 = 𝑇) terms 

involving 𝑣𝑖  in the product defining the likelihood (3) need to be evaluated. 

Initial values of the parameters and volatilities: In order to start the MCMC sampling procedure 

the values and latent variables of the parameters need to be appropriately initialized. Since we 

are going to use daily data with  Δ𝑡 = 1/250 we will start with “normally” observable annualized 

parameters of the continuous-time volatility equation, 𝑉𝐿𝑇 = 0.01, 𝜅 = 2.5, 𝜎𝑉 = 50%, and 

transform them using the formulas given in Section 2.1. The initial mean parameter in (1) can be 

simply set equal to the mean of the observed returns 𝑚 = 𝑚𝑒𝑎𝑛(𝐲). Similarly, the initial 

variance can be estimated from the return series based on the simple EWMA (Exponential 

Weighted Moving Average) model setting 𝑣1 = 𝑣𝑎𝑟(𝐲), and recursively 𝑣𝑖+1 = 𝑤𝑣𝑖 +

(1 − 𝑤)𝑦𝑖
2 for 𝑖 = 2, … , 𝑇. 

3. The Neural Network Training Dataset for the Heston Model  

The neural network training is relatively straightforward once we define an appropriate dataset 

where features are selected historical returns’ generalized moments and the vector of the 

Heston model parameters is the target.  
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We will generate daily returns and sample the vector of parameters Θ = 〈𝑚, 𝛼, 𝛽, 𝛾,  𝜌〉 by 

specifying certain “usual” ranges of the annualized parameters sampled from the uniform 

distribution: 

• 𝜇 ∈ [0,0.3], the mean of returns, 

• 𝜃𝑉 ∈ [0.12, 0.32], long term variance, 

• 𝜅 ∈ [1,5], speed of mean reversion, 

• 𝜎𝑉 ∈ [0.1, min(0.5, √2𝜅𝜃𝑣 − 0.05], volatility of volatility where we need to ensure the 

Feller’s condition, and 

•  𝜌𝑆𝑉 ∈ [−0.9,0.3], leverage effect parameter. 

The sampled annual parameters are again transformed into the daily model parameters with 

Δ𝑡 = 1/250 based on the formulas given in Section 2.1. In order to sample the volatility ⟨𝑣𝑖⟩𝑖=1
𝑇  

and return time series ⟨𝑦𝑖⟩𝑖=1
𝑇 , we also need to sample the initial variance: 𝑉0 ∈ [0.12, 0.32] in 

annualized terms. In our empirical study we will work with 𝑇 = 1000 daily returns, but of course 

longer or shorter periods can be used as well. 

Since we are going to apply a feed-forward NN the number of inputs needs to be limited by 

extracting appropriate characteristics (generalized moments) from the return time series. The 

generalized moments below follow Bollerslev and Zhou (2002) estimating the Heston model 

parameters with GMM, but the list of features is substantially more extensive. Unlike GMM 

where the weights of the moments are implicitly set by the researcher, the NN should utilize the 

important features only and assign them weights automatically during the training process. We 

are going to analyze the most important features in the empirical section using the LIME (Local 

Interpretable Model-Agnostic Explanations) method (Ribeiro et al., 2016). We propose to use 

the following 45 features that can be viewed as empirical proxies or characteristics related to 

the target variables: 

• variance, skewness, kurtosis, and the 5th moment of ⟨𝑦𝑖⟩𝑖=1
𝑇 , 

• autocorrelations of ⟨𝑦𝑖
2⟩

𝑖=1

𝑇
 (with lags 2-5, and the mean of autocorrelations with lags 6-

10), 

• autocorrelations of ⟨|𝑦𝑖|⟩𝑖=1
𝑇  (with lags 2-5), 

• correlations 𝑐𝑜𝑟𝑟(𝑦𝑖−1, 𝑦𝑖
2 − 𝑦𝑖−1

2 ) and 𝑐𝑜𝑟𝑟(𝑦𝑖−1,|𝑦𝑖| − |𝑦𝑖−1|), 

• calculated realized variances 𝑅𝑉𝑗 = ∑𝑦𝑖
2, 𝑅𝐴𝑗 = ∑ |𝑦𝑖|, and cumulative returns 𝑅𝑐𝑗 =

∑ 𝑦𝑖 over non-overlapping periods of 𝐷 = 10 and 20 days, 

• mean, variance, skewness, kurtosis, and autocorrelations (with lags 2-3) of RV, 

• correlations 𝑐𝑜𝑟𝑟(𝑅𝑉𝑗, 𝑅𝑐𝑗), 𝑐𝑜𝑟𝑟(𝑅𝑉𝑗, 𝑅𝐴𝑗), 𝑐𝑜𝑟𝑟(𝑅𝑉𝑗 − 𝑅𝑉𝑗−1, 𝑅𝑐𝑗), 𝑐𝑜𝑟𝑟(𝑅𝑉𝑗 −

𝑅𝑉𝑗−1, 𝑅𝑐𝑗−1), 𝑐𝑜𝑟𝑟(𝑅𝑉𝑗 − 𝑅𝑉𝑗−1, 𝑅𝐴𝑗), and 𝑐𝑜𝑟𝑟(𝑅𝑉𝑗 − 𝑅𝑉𝑗−1, 𝑅𝐴𝑗−1),  

• AR(1) intercept of 𝑅𝑉 (proxy of alpha), 

• autocorrelation of 𝑅𝑉2, i.e. 𝑐𝑜𝑟𝑟(𝑅𝑉𝑗−1
2 , 𝑅𝑉𝑗

2). 

Finally, we will normalize the features and the target variables (using the min-max linear 

method) based on the minimum and maximum of the variables in the dataset so that each 

variable range is between 0 and 1. This is in particular important for the target variables since 

otherwise the standard sum-of-squared-differences error function would implicitly assign 

different weights to the target variables depending on their magnitudes. Regarding the size of 

the training dataset, we will use 𝑁 = 50 000, but smaller or larger datasets can be certainly 

sampled depending on the computational resources. The training of a feed-forward neural 

network will be performed in Matlab (2021b) using the standard Levenberg-Marquardt 

algorithm (Levenberg, 1944, or Marquardt, 1963).  
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Figure 3 - A neural network training summary report produced by Matlab 

  

Figure 3 shows an example of a summary report for training of a neural network with two hidden 

layers, each with 20 neurons (with the sigmoid activation function). The reported performance 

0.0372 in terms of the mean-square-error of the standardized target can be interpreted (after 

taking the square root) as an average relative error of the estimation model on the testing 

dataset. Note that the training procedure took approximately 28 minutes on a standard 

notebook computer with the Intel i7 processor. This is a one-time larger computational cost, in 

fact much smaller than in case of the MCMC algorithm, and then the evaluation of the estimates 

on a given set of inputs takes just a fraction of a second. The algorithm randomly splits the 

original training dataset into the “Train”, “Validation”, and “Test” datasets (in the proportion 

70:15:15), and optimizes the error on the “Train” dataset periodically checking the performance 

on the “Validation” dataset. The final performance is reported on the “Test” dataset. However, 

to double check the performance we shall also sample an additional testing dataset (e.g. with 

2 000 observations) that will not be used in the training procedure at all, and in the empirical 

section we report the performance on this pure out-of-sample dataset. 

4. Empirical results 

4.1. The methodology of comparison between the MCMC and NN estimation 

methods 

As outlined in the introduction, the advantage of the MCMC method is that it gives an empirical 

approximation of the full posterior distribution 𝑝(Θ|𝑑𝑎𝑡𝑎) of the parameters given the data, i.e. 

the time series of returns in our case. In practice, the mean, median, or mode of the distribution 

can be used as the point estimates Θ̂ = 𝑓𝑀𝐶𝑀𝐶(𝑑𝑎𝑡𝑎) and, in addition, the empirical density 

gives us a full picture of the Bayesian error distribution. Therefore, the variance of 𝑝(Θ|𝑑𝑎𝑡𝑎) 

can be interpreted as the irreducible error that cannot be eliminated by any statistical estimator. 

Generally, for any statistical learning algorithm trying to estimate a target 𝑌 given a vector of 

features 𝑋, the error can be decomposed into the irreducible error given by 𝑝(𝑌|𝑋), the 

estimator 𝑓(𝑋) variance, and the bias: 

𝐸 [(𝑌 − 𝑓𝑇̂(𝑋))
2

|𝑋] = var[Y|X] + E [(E[𝑓𝑇(𝑋)] − 𝑓𝑇(𝑋))
2

|𝑋] + (E[Y|X] − E[𝑓𝑇(𝑋)|𝑋])
2
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Note that the estimator 𝑓𝑇(𝑋) depends also on the training dataset 𝑇, implicitly assuming that 

(𝑋, 𝑌) drawn from the testing dataset is independent on the set 𝑇 (see Hastie et al., 2009).  

If the target 𝑌 was a function of 𝑋, then the irreducible error would be equal to zero! However, 

if 𝑌 is not uniquely determined by 𝑋 incorporating some noise or some unknown information, 

then the irreducible error becomes positive, i.e. it depends on the “information content” of the 

vector of features! 

Therefore, the goal might be to compare the error of the NN estimator with the standard 

deviation of 𝑝(Θ|𝑑𝑎𝑡𝑎). However, there are at least two issues with this approach. Firstly, the 

NN model (feed-forward NN), gives us only point estimates 𝑓𝑁𝑁(𝑑𝑎𝑡𝑎) and it is not obvious how 

to approximate the posterior distribution 𝑝(Θ|𝑑𝑎𝑡𝑎) or at least its variance using a NN model. 

Secondly, the MCMC point estimates based on a feasible computational time often turn out to 

have a substantial error with respect to the true values. Hence, the MCMC error should 

incorporate not only variance of 𝑝(Θ|𝑑𝑎𝑡𝑎), but also variance of the point estimate 

Θ̂ = 𝑓𝑀𝐶𝑀𝐶(𝑑𝑎𝑡𝑎) ≈ 𝐸[Θ|𝑑𝑎𝑡𝑎]. 

We shall report the standard deviation of 𝑝(Θ|𝑑𝑎𝑡𝑎) or its average value over a collection of 

data (sampled time series) used as input of the MCMC algorithm. However, to conclude the 

discussion, we will simply focus on RMSE, R-squared, or the bias based on the sampled 

parameters  Θ𝑗 (and return series 𝑑𝑎𝑡𝑎𝑗) and the point estimates Θ̂𝑗, i.e.  

𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ (Θ̂𝑗 − Θ𝑗)

2𝐾

1
 , 

for both estimation methods. Alternatively, we will also report the results with a fixed “typical” 

parameter vector Θ and sample only the time series of returns 𝑑𝑎𝑡𝑎𝑗. 

4.2. MCMC estimation results 

To illustrate the performance of the MCMC algorithm, we have firstly fixed a set of “true” HM 

parameters (see the 1st row of Table 1), repeated (100 times) sampling of the daily return time 

series (of length 1000), and run (for sampled return series) the MCMC estimation algorithm with 

3000 iterations. Figure 4 gives example of the iteratively sampled estimates of the most 

problematic parameter 𝜌 fluctuating around its true value set to −0.5. It indicates that the 

convergence to the posterior distribution is relatively fast, and, at the same time that the 

irreducible error for this parameter (posterior variance) will be quite large. The acceptance ratio 

of the 𝜌 parameter proposals (and similarly for the other parameters) is around 60-90% 

indicating that the algorithm works well. We have also tested implementation of the MCMC 

algorithm with a larger number of iterations, e.g. 6 000 or 10 000, and achieved only a small 

improvement against a substantially higher computational time.  
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Figure 4 - An example of the parameter ρ MCMC estimates convergence 

 
Table 1 summarizes the results of the 100 MCMC estimations where the point estimates are 

defined as means of the sampled values with the burnout period set to 1 499, i.e. as the means 

of values sampled in the 1500th to 3000th iteration. The table gives the mean of the 100 MCMC 

estimates and the mean of the 100 posterior standard deviations of the individual parameters. 

In addition, it shows the RMSE and bias of the point estimates with respect to the true values. 

For example, focusing on 𝜌, the estimated average posterior standard deviation corresponding 

to the theoretical irreducible error is relatively large 0.0962, but in addition the RMSE with 

respect to the true value is even larger (0.1974) caused mainly by the bias (0.1294). The bias and 

the RMSE should theoretically disappear if the length of the chain converged to infinity, which 

is, of course, impossible in practice. The errors of the other parameters appear to be much 

smaller, but this is to large extent caused by their low levels or narrow ranges sample d in the 

training dataset (see Section 3). For a better relative comparison, one should look at the values 

normalized with respect to the minimum and maximum values of the parameters in the training 

dataset. Then it turns out that the relative errors (RMSE_n and Bias_n) are also quite large, 

between 10% to 60%, with the overall normalized RMSE being approximately 28%. 

Table 1 – MCMC results with fixed parameters and based on 100 estimation runs 
 

 m alpha beta    gamma rho 

True val. 0.0012 0.0000 0.9900 0.0013 -0.5000 

Mean est. 0.0011 0.0000 0.9824 0.0013 -0.3706 

RMSE 0.0004 0.0000 0.0101 0.0002 0.1974 

Bias -0.0001 0.0000 -0.0076 0.0001 0.1294 

Post std 0.0003 0.0000 0.0061 0.0001 0.0962 

RMSE_n 0.2938 0.1119 0.6294 0.1324 0.1645 

Bias_n -0.0504 0.1119 -0.4733 0.0300 0.1079 

The performance of the MCMC method on 500 parameter vectors sampled from the ranges 

specified in Section 3 is reported in Table 2. Again, focusing firstly on the parameter 𝜌, we can 

notice that the average posterior standard deviation is approximately the  same (0.1022) as in 

the case with fixed parameters, but that the point estimate 𝑅𝑀𝑆𝐸 = √
1

500
∑ (𝜌̂𝑗 − 𝜌𝑗 )

2500
1   with 

variable Θ𝑗 turns out to be substantially larger (0.3316) which is caused mainly by the bias 
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(0.1872). The R2 of the 𝜌 estimate is not too large, but at least positive (0.2012). It is interesting 

to note that the R2 of all the other parameter are negative which is caused by relatively large 

estimation biases. A better comparison of the estimation precision in terms of RMSE and bias 

can be obtained looking rather on the normalized values in the last two rows of  Table 2. The 

mean normalized RMSE across all parameters appears very high at around 55%. 

The calculation took over 20 hours of Matlab 2021b four workers parallel computing on a Core 

i7 desktop computer.  As mentioned above the results improved only slightly when the number 

of MCMC iterations was increased to 10 000, but the computational time went to more than 60 

hours. 

Table 2 – MCMC results with variable parameters sampled 500 times 
 

m alpha beta     gamma rho 

RMSE 0.0004 0.0000 0.0197 0.0005 0.3316 

Bias -0.0000 0.0000 -0.0156 0.0004 0.1872 

R2 -0.5944 -8.1504 -17.5456 -0.2145 0.2012 

Post std 0.0004 0.0000 0.0082 0.0001 0.1022 

RMSE_n 0.3643 0.5802 1.2288 0.2875 0.2764 

Bias_n -0.0396 0.3917 -0.9637 0.2078 0.1560 

The performance of the estimations can be further analyzed, for example, with the Mincer-

Zarnowitz test regressing the true parameter values against the estimates, 𝜃 = 𝛼 + 𝛽𝜃̂ + 𝜀. For 

example, in case of 𝜌, the Mincer-Zarnowitz regression correcting for the bias and slope (𝛼 and 

𝛽) shows a relatively good R-squared of 0.467. The issue with the quite low slope (that should 

be optimally equal to 1) is also illustrated by the scatter-plot in the left part of Figure 5. The 

right-hand part of the figure shows the wide distribution and a large bias of the estimation 

errors, i.e. of 𝜌̂𝑗 − 𝜌𝑗 , 𝑗 = 1, … ,500. 

Table 3 – Mincer-Zarnowitz regression of true versus estimated values of 𝝆 (MCMC) 

       Estimate            s.e.    t-statistics         p-value 

𝜶 -0.2063 0.0134 -15.376 6.09e-44 

𝜷 0.8624 0.0413 20.871 5.698e-70 

Number of observations: 500, Error degrees of freedom: 498 

RMSE: 0.271, R-squared: 0.467, Adjusted R-squared: 0.466 
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Figure 5 - The true vs. estimated ρ scatter plot (left figure) and the estimation error distribution 

(MCMC) 

 

4.3. NN estimation results 

Next, let us look at the performance of the NN estimator. As described in Section 3 the NN with 

two hidden layers (both with 20 neurons) was trained on a dataset of 50 000 synthetically 

generated observations, i.e. sets of generalized moments (features) calculated from daily return 

time series of length 1000 conditional on sampled parameter vectors (targets). The training itself 

took less than 30 minutes with results given in Figure 3. The reported performance (0.0372) 

should be interpreted as the mean-squared error of the normalized parameter estimates 

corresponding to the average normalized RMSE around 0.193.  

Let us firstly look at the NN out-sample performance (Table 4) when we fix the set of parameters 

as above (compare with Table 1). Since one estimation takes less than a second, we can easily 

run it 500 times (sampling the time series and the generalized moments based on the fixed 

vector of parameters). Table 4 demonstrates substantially better performance of the NN 

estimator compared to MCMC with an overall normalized RMSE equal approximately to 19% 

(compared to 28% in case of MCMC). The better RMSE appears to be related mainly to much 

lower biases, for example just 0.0217 in case of 𝜌 (compared to 0.1294 for the MCMC). 

Table 4 – NN estimation results with fixed parameters and based on 500 times sampled return series 
 

m alpha beta gamma rho 

True val. 0.0012 0.0000 0.9900 0.0013 -0.5000 

Mean est. 0.0008 0.0000 0.9880 0.0013 -0.4783 

RMSE 0.0004 0.0000 0.0030 0.0002 0.1694 

Bias -0.0004 0.0000 -0.0020 0.0000 0.0217 

RMSE_n 0.3347 0.0968 0.1850 0.1227 0.1412 

Bias_n -0.2950 0.0681 -0.1254 0.0091 0.0181 

Finally, Table 5 reports the NN performance on the full out-of-sample testing dataset with 

variable parameters and 2 000 observations. The overall normalized RMSE (19%) is again 

substantially lower than in case of MCMC (55%). It should be noted that in case of the variable 

parameter testing dataset the average biases turn out to be almost negligible, both in absolute 



 

13 

and relative terms, and unlike in case of MCMC, the R-squared values are positive and relatively 

high for all the parameters. 

Table 5 – NN estimation results with variable parameters on the testing dataset with 2 000 observations  
 

m alpha beta gamma rho 

RMSE 0.0003 0.0000 0.0043 0.0002 0.2389 

Bias 0.0000 0.0000 -0.0000 0.0000 0.0025 

R2 0.3701 0.6328 0.1566 0.7631 0.5325 

RMSE_n 0.0003 0.0000 0.0043 0.0002 0.2389 

Bias_n 0.0000 0.0000 -0.0000 0.0000 0.0025 

For the sake of completeness, Table 6 reports the Mincer-Zarnowitz regression results. In this 

case, the NN estimator passes the test with the intercept not being significantly different from 

0 and the slope not significantly different from 1. Figure 6 also visually indicates superiority of 

the NN estimator compared to MCMC (see Figure 5). 

Table 6 – Mincer-Zarnowitz regression of true versus estimated values of 𝝆 (NN) 

       Estimate            s.e.    t-statistics         p-value 

𝜶 -0.0025 0.0083 -0.3021 0.76255 

𝜷 1.0021 0.0210 47,711 0 

Number of observations:2000, Error degrees of freedom: 1998 

RMSE: 0.239, R-squared: 0.533, Adjusted R-squared: 0.532 

 

Figure 6 - The true vs. estimated ρ scatter plot (left figure) and the estimation error distribution (NN)  

 

4.4. Interpretability of the NN model 

One of the disadvantages of neural networks, often discussed by researchers and practitioners 

(see e.g. Hull, 2021), is their Blackbox character, i.e. their difficult interpretability in terms of 

dependence of the output targer values on the input feature values. The most well-known 

methods to handle the issues are the LIME (Local Interpretable Model-Agnostic Explanations) 

and the method of Shapley values.  
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Shapley values calculate average impact of each feature value of a query point with respect to 

its expectation considering all possible combinations of the other features values at the query 

point. On the other hand, Lime simply interpolates the data locally at a query point by a linear 

model (or tree for a categorical model), selects a number of variables and shows the prediction 

of the approximate simple model. In case of a higher dimensional target, the analysis needs to 

be done separately for individual coordinates of the output vector.  

In our case, we consider the Lime method as easier to apply and interpret in order to check that 

the most important explanatory variables (features) and their impact correspond with our 

intuition.  

Figure 7 - The most important 5 variables and their coefficients estimated by LIME for ρ and β  

 

For example, Figure 7 shows the five most important features selected by Lime and the 

estimated coefficients of the approximating model predicting 𝜌 (left) and 𝛽 (right). The query 

point at which the models are evaluated is set to the mode of the (testing) dataset, however the 

estimated Lime model is, in fact, global, i.e. it is the linear model estimated on the full dataset 

(with the min-max standardized feature and target values). It turns out that the selected 

features and their signs are consistent with our intuition and document importance of the 

concept of realized volatility.  

The five selected features for 𝜌 in the order shown on the figure (left part) are: 𝑐𝑜𝑟𝑟(𝑅𝑉𝑗, 𝑅𝑐𝑗), 

𝑐𝑜𝑟𝑟(𝑅𝑉𝑗 − 𝑅𝑉𝑗−1, 𝑅𝑐𝑗), 𝑐𝑜𝑟𝑟(𝑅𝑉𝑗 − 𝑅𝑉𝑗−1, 𝑅𝑐𝑗−1),  𝑐𝑜𝑟𝑟(𝑦𝑡−1,|𝑦𝑡| − |𝑦𝑡−1|), and  

𝑐𝑜𝑟𝑟(𝑦𝑡,𝑦𝑡−2). The five selected features for 𝛽 (right part) are: 𝑣𝑎𝑟(𝑅𝑉), 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑅𝑉), AR (1) 

intercept of 𝑅𝑉, and lag 1-2 autocorrelations of 𝑅𝑉, where 𝑅𝑉 is the 20-day realized variance. 

5. Discussion and Conclusions 

We have outlined a flexible neural network application to estimation of unknown parameters of 

a model based on a large synthetically generated dataset conditional on the data-generating 

model. Our specific hypothesis was that this approach can provide more precise and 

computationally efficient estimates of the Heston model parameters compared to state-of-the-

art probabilistic methods such as the Bayesian MCMC. We have implemented and compared 

both methods on relatively large testing datasets. The empirical results have confirmed our 

hypothesis in both directions: the NN parameter estimation approach is substantially faster 

compared to the MCMC method, and in addition the estimations are more precise. To mention 

some advantages of MCMC, this method gives an empirical approximation of the posterior 

parameter distribution and estimates the latent state variables (i.e. stochastic volatilities in case 
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of the HM) together with the model parameters. On the other hand, an important advantage of 

the NN approach is its relative simplicity compared to the MCMC method requiring a careful 

formulation of marginal and proposal densities. We have applied the simplest feed-forward NN 

requiring to condense a large time series to a limited number of features defined as a set of 

selected generalized moments. However, we believe that even this “manual” part of the 

estimation procedure could be eliminated applying the convolutional or similar NN, which is a 

direction of our further research.  

Regarding the provocative subtitle “Forget Statistics – Machine Learning is Sufficient!” of the 

paper, we do believe that the NN estimation approach might indeed outperform the classical 

methods for a large class of models. This general hypothesis has been confirmed in case of the 

HM, but, of course, it remains to be tested on many other models, in particular on more complex 

latent state space financial models that are difficult to estimate using the classical methods. To 

conclude in more moderate and realistic terms, we believe that the NN approach can provide 

more efficient estimates compared to the classical statistical methods, but we agree that the 

classical probability and statistics theory is of course needed in order to study and assess 

properties of such novel machine learning methods. 
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