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A Comparison of Neural Networks and Bayesian
MCMC for the Heston Model Estimation

(Forget Statistics — Machine Learning is Sufficient!)

Jifi Witzany?!, Milan Fiéura?

Abstract

The main goal of this paper is to compare the classical MCMC estimation method with a
universal Neural Network (NN) approach to estimate unknown parameters of the Heston
stochastic volatility model given a series of observable asset returns. The main idea of the NN
approach is to generate a large training synthetic dataset with sampled parametervectors and
the return series conditional on the Heston model. The NN can then be trained reverting the
input and output, i.e. setting the return series, or rather a set of derived generalized moments
as the input features and the parameters as the target. Once the NN has been trained, the
estimation of parameters given observed return series becomes very efficient compared to the
MCMC algorithm. Our empirical study implements the MCMC estimation algorithm and
demonstrates thatthe trained NN provides more precise and substantially faster estimations of
the Heston model parameters. We discuss some otheradvantages and disadvantages of thetwo
methods and hypothesize that the universal NN approach can in general give better results
compared to the classical statistical estimation methods for a wide class of models.

AMS/JEL classification: C45, C63, G13

Keywords: Heston model, parameter estimation, neural networks, MCMC

1. Introduction

Recently, there has been a considerable interest in machine learning methods applications to
financial models calibration, i.e. unknown parameter estimation based on observable market
data. For example, in case of advanced stochastic volatility models used forvaluation of options
and other derivatives, it is important to perform a relatively fast calibration based on available
plain vanilla option prices or other market information. It turns out that the calibration
performed using classical statistical or optimization methods is often substantially slower
compared to a calibration based on neuralnetworks (see e. g. Horvath etal., 2021, or Caoet al.,
2022). Another approach to the calibration, in case of unavailable option prices, is to estimate
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the model parameters based on available historical returns of the underlying assets. Hutchinson
et al. (1994) in their seminal paper tested this approach on the relatively simple Black-Scholes
model. However, in case of stochastic volatility or jump models, this is known to be a difficult
estimation problem since the stochastic volatility (and/or jump occurrence) represent latent
state variables that need to be estimated, or integrated out, at the same time with the
parameters’ estimation (Shephard, 2004). Witzany and Ficura (2023) proposed a neural network
(generalized) moment-based approach to the Heston model calibration and option valuation
based on historical underlying asset prices. The trained neural network (NN) models showed
promising results but with estimation errors relatively large compared to the classical calibration
using quoted option prices (unavailable in this case). The estimation error can be generaly
decomposed into the irreducible error due to limited information content of the input in the
form of an observed returns dataset and to the error due to the estimation method itself. The
main motivation of this paperis toimplement the Bayesian MCMC methodforthe Heston model
in order to show that the former type of error represents the key contribution to the overall
estimation error, and that the neural network estimation approach, in fact, performs quite well.
This can be done looking on the posterior distribution of the parameters conditional on the input
data, or in a simpler way, comparing the estimation error of MCMC point estimates and the NN
estimates.

The motivation of this paper can be actually formulated in more general terms. A key problem
of statistics is to analyze collected data by describing an appropriate probabilistic data-
generating model (Figure 1) with parameters that are somehow estimated from the observed
data. The classical estimation approaches include the method of moments (MM), the
generalized method of moments (GMM), the maximum likelihood estimation (MLE), or Bayesian
methods such as the Markov Chain Monte Carlo (MCMC) with Gibbs, Metropolis-Hastings, or
Particle Filter sampling (see e.g. Lynch, 2007, Johannes and Polson, 2009, or Speekenbrink,
2016). The Bayesian MCMC approach turns out to be superior in case of latent state-space
models like the stochastic volatility models. However, the implementation of the Bayesian
estimation methods requires a tedious analysis of the marginal densities, proposal densities,
and prior distributions. In addition, the estimation procedure is usually quite slow and
computationally-intensive with certain level of uncertainty regarding the speed of convergence
of the sampled chain to the theoretical distribution.

Figure 1 - A data generating model scheme
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The machine learning (NN) based model estimation offers arelatively straightforward approach
where the NN learns the relationship between the observed data and the set of parameters @
on a large synthetically generated dataset. A possible architecture of a feed-forward NN with a
fixed number of features is outlined in Figure 2. In this case, the general dataset can be very
large and it needs to be transformed to a limited set of extracted characteristics m = (m;) that
can be called “generalized moments” in an analogy with GMM. The training datasetis obtained
by sampling the model parameters ©; from an appropriate distribution, sampling the dataset of
a given size and conditional on the model (Figure 1), and finally calculating the generalized



moments m;. The synthetic dataset {(mj,@]—);j =1, .., N} is then used for training of the NN
as outlined in Figure 2. The advantage of this approach is that the training dataset can be as
large as we wish and computational resources allow. Moreover, the NN training procedure,
which might be computationally more intensive, can be implemented offline, while the trained
NN itself, used for model estimation, would be usually very fast.

Figure 2 - A neural network estimating model parameters from historical return moments
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We will show that in case of the Heston model the NN parameter estimation approach gives
guite good results compared to the MCMC approach. Note that NN estimation is very flexible
and straightforward since it does not require adecomposition of the data-generating modelinto
marginal densities etc. as in case of MCMC. However, one can object that in case of the Figure
2 NN architecture we need to manually find and define an appropriate set of generalized
moments requiring a deeper analysis of the model. This part of the process can be eliminated
employing other architectures such as the Convolutional or Long-Short-Term-Memory (LSTM)
NN where the full dataset can be used on the input of the network. We hypothesize that this
universalapproach is quite efficient and applicable to a wide class of models, in particular to the
more complex latent state variable models that are difficult to estimate using classical methods.

The paperis organized as follows: after the introduction, Section 2 describes the MCMC method
applied to the Heston model, Section 3 specifies the NN training dataset construction, Section 4
reports and discusses the empirical results, and Section 5 concludes.

2. MCMC Estimation of the Heston Model

2.1. The Heston Model

The Heston (1993) model describing a price process S (or log-price s =InS process) in
continuous time with stochastic volatility (variance) V can be described by the following
stochastic differential equations

ds = udt +vVadw,,
av = K(VLT - V)dt + O'V\/VdWZ,
corr(dW,,dW,) = p.

The stochastic variance will stay (almost surely) positive provided the Feller (1991) condition
2kV,r > o is satisfied.

Since the prices and returns are in reality observed over T discrete time intervals of length At
(e.g. one trading day, i.e. At = 1/250) we discretize the model as follows: set y; = s(iAt) —
s(@-1At),i=1,...,Tand

v, = a+ By + vy viigl

(1)
Yi =m+\/v_i€i»



g,~N(0,1), e/ ~N(0,1), corr(e;_y,&/) = p fori = 2, i.e.

g/ =pe_,++1—p?u, u~N(0,1),iid.

The relationship between the continuous and discrete time model parameters and the latent
stochastic volatility is as follows: m =~ uAt, v = VAt , B ~ 1 —kAt, a =~ kV;;7At? ,and y =
oy At.Note that y must satisfy the Feller condition: 2a > y 2.

Therefore, given observed returns y = (y, ..., y7), the main goal is to estimate the vector of
parameters @ = (m, a, B, ¥, p). An auxiliary goal might be to estimate the latent variances v =
(vq, ..., vp), or at least the last one, i.e. v, that allows us to analyze and simulate the future
development of the return and volatility processes.

2.2. The MCMC Estimation Algorithm

In the Bayesian approach, the unknown parameters and state variables are estimated based on
the equation

p(0,vly) « L(ylv,0) x prior(v,0). )

The likelihood functionis given by the discrete-time Heston model (1) is expressed as a product
of bivariate normal densities of the pairs (v;,y;_,) conditional on v;_; fori = 2,..,.T, and of
the univariate normal density of yr conditional on v (as the value of vy, 4 is unknown), i.e.

L(ylv,0) = ¢(y;; m,vT)L_Z[ ®, ((vi,y,-_l); (a + Bv;_y,m), (V Viq PYUl-1)>_ o)

PYVi—1 Vi

The multivariate prior distribution in (2) is specified below based either on noninformative or
appropriate wide distributions reflecting some basic limitations that we need to put on the
parameters. The main principle of the MCMCalgorithm is to iteratively sample the parameters
and latent variables one-by-one (or in blocks) conditional on all the other already sampled
parameters and variables from the conditional distributions that are typically simpler than the
joint posterior distribution given by (2). According to Clifford-Hammersley theorem (see e.g.
Johannes and Polson, 2009) the sequence (chain) of sampled parameters and variables
convergesto the distribution given by (2). It should be notedthat there are different approaches
to the HM Bayesian estimation that can be found in literature (see e.g. Frihwirth-Schnatter and
Soégner, 2003), but our goal is to propose a rather straightforward MCMC estimation algorithm
that can be empirically compared with the NN approach.

The MCMC sampling is typically performed by the Gibbs samplerif the marginal distribution has
a known parametric form, or otherwise, typically, by the Metropolis-Hastings accept-reject
sampler based on a proposal distribution. We will use the latter possibility since the HM marginal
distributions are difficult or impossible to find in parametric form due to relative complexity of
the bivariate densities in the likelihood function (3). The following summarize the individual
MCMC sampling steps of the unknown parameters ® = (m, a, B,y, p) and volatilities v =
(vq, ..., vr)given observed returns y = (y, ..., yr):

(i) Sampling of the mean return m, giveny = (y,, ..., yr)and v = (v, ..., v7),

based on p(y;Im,v;) = @(y;; m,v;), and with the non-informative prior sample the proposal:
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The sampled value m cannot be used as in the Gibbs sampler since the proposal density does
not consider the leverage correlation p. Therefore, we need to accept/reject the proposal m,
against the previous value mg with the probability min (R, 1), where

_pOm] .)q(mol..)
p(me|..)q(my|...)’

p(ml..) = L(ylv,0),0 = (m, ...),

qgiml..) = (p(ﬂl;%,%).

(ii) Sampling of the SV equation parameters «, 5, y, given v = (vy, ..., V),

based on p(v;la,B,v,vi—1) = ¢(v;; @ + Bvi_1,¥%v;—1), and with the non-informative prior
sample from the proposal:

1
qlal...)=¢ ( L A) where
T
A= Z Z vy — Briq
= 2)’2771 1 =~ Y2V

And, again, accept/reject based on p(al ...) = L(ylv,®) and q(al...) = ¢ (a; %,%).

Similarly, accept/reject the proposal for S:

qBla,y,v) « <p([3 1 il) X prior(B), where

T T
Vi1 v, —a
1S pSue,
y? Y2vioq

i=2 i=2

In this case we will use an informative prior(B) = ¢(; 0.985,0.022) since in case of daily data
the parameter § = 1 — kAt is expected to be around 0.99.

And finally, accept/reject the proposal for G = y 2, with the Jeffreys prior p(G) « 1/G :

T—-1
qO(Gla'ﬁ'V) x IG (G;T; C),Where

C:i(cx— (i~ poi-)”

2v;
i=2 =1

In this case, we need to use q(y| o) X fe (G;%, C)- Y.
(iii) Sampling of the correlation parameter p given m,a,B,y, y = (34, ..., yr), and v =
(Ul, ey UT>.



Calculate ¢; and slV fori =2,...,T from the model (1) equations, and calculate the sample
correlation p = corr(e,&V). Forsampling use the Fishertransformation F (p) = artanh(p), ie.
sample x~N(artanh(E,ﬁ) and set the proposal p; = tanh (x).

Finally, use the Metropolis-Hastings accept-reject algorithm choosing between the previously
sampled correlation estimate py and the new proposal p;, which is accepted with probability
min (R, 1), where

p = Pl -)apol )
p(pol--)q(ps]..)’

p(pl..) = L(ylv,0),
1 1
qlpl..)=¢ (artanh(p); artanh(ﬁ),m> =7

Sampling of the stochastic variance v; given v;_q , V;y1,Vi, Visq and the SV equations
parameters m,a, B3, v, p:

Estimate the expected variance using a naive GARCH-like model, e.g. as(for 1 <i<T,
analogously fori =1,o0ri =T)

Vi—1 +v;
EV =w—"——5 + (L-w) (y;— m)?,

where w is a GARCH-like weight, for example 0.95. Then sample from the gamma distribution

with  the mean EV and sampling standard deviation SV =vy,/v;_4, ie.
2

q(| ...)~Gamma(v; a,b), where b = % anda = %/. Fori =1andi =T the proposal must

be modified based only onthe single neighboring variance. Finally, use Metropolis-Hastings with
the acceptance ratio

_p@].)a@, )
p@ol - a(l )’

where p(vl..) < L(yIv, ©) with the remark that only the two (oroneifi = 1 ori = T) terms
involving v; in the product defining the likelihood (3) need to be evaluated.

Initial values of the parameters and volatilities: In orderto start the MCMC sampling procedure
the values and latent variables of the parameters need to be appropriately initialized. Since we
are going to use daily datawith At = 1/250we will start with “normally” observable annualized
parameters of the continuous-time volatility equation, V;+ = 0.01,x = 2.5,0, = 50%, and
transform them using the formulas givenin Section 2.1. The initial mean parameterin (1) can be
simply set equal to the mean of the observed returns m = mean(y). Similarly, the initial
variance can be estimated from the return series based on the simple EWMA (Exponential
Weighted Moving Average) model setting v, = var(y), and recursively v;.; = wv; +
1 -w)y?fori=2,..,T.

3. The Neural Network Training Dataset for the Heston Model

The neural network trainingis relatively straightforward once we define an appropriate dataset
where features are selected historical returns’ generalized moments and the vector of the
Heston model parameters is the target.



We will generate daily returns and sample the vector of parameters ® = (m,a, 8,7, p) by
specifying certain “usual” ranges of the annualized parameters sampled from the uniform
distribution:

* u €]0,0.3], the mean of returns,

s 6, €[0.12,0.3%], long term variance,

* Kk € [1,5], speed of mean reversion,

* oy € [0.1, min(0.5, \/2k0, — 0.05], volatility of volatility where we need to ensure the
Feller’s condition, and

*  pgy € [-0.9,0.3], leverage effect parameter.

The sampled annual parameters are again transformed into the daily model parameters with
At = 1/250 based on the formulas given in Section 2.1. In orderto sample the volatility (vi)?zl
and return time series (yl-)iT=1, we also need to sample the initial variance: V, € [0.12,0.32] in
annualized terms. In ourempirical study we willwork with T = 1000 daily returns, but of course
longer or shorter periods can be used as well.

Since we are going to apply a feed-forward NN the number of inputs needs to be limited by
extracting appropriate characteristics (generalized moments) from the return time series. The
generalized moments below follow Bollerslev and Zhou (2002) estimating the Heston model
parameters with GMM, but the list of features is substantially more extensive. Unlike GMM
where the weights of the moments are implicitly set by the researcher, the NN should utilize the
important features only and assign them weights automatically during the training process. We
are going to analyze the most important featuresin the empirical section using the LIME (Local
Interpretable Model-Agnostic Explanations) method (Ribeiro et al., 2016). We propose to use
the following 45 features that can be viewed as empirical proxies or characteristics related to
the target variables:

* variance, skewness, kurtosis, and the 5" moment of (yi)iTzl,

T
* autocorrelations of (yi2>l.=1 (with lags 2-5, and the mean of autocorrelations with lags 6-

10),

« autocorrelations of (|y;|)!_; (with lags 2-5),

« correlations corr(y;_y, y? — y?,) and corr(yi_1 lyil = lyi_1]),

* calculated realized variances RV; = Zyiz, RA; = 2 |y;|, and cumulative returns Rcj =
2. y; over non-overlapping periods of D = 10 and 20 days,

* mean, variance, skewness, kurtosis, and autocorrelations (with lags 2-3) of RV,

* correlations corr(RVj,Rc;), corr(RV;,RA;j), corr(RV; —RV;_q,Rc;), corr(RV; —
RVj_1,Rcj_1), corr(RV; — RV;_1,RA;)), and corr(RV; — RV;_y,RA;_;),

* AR(1) intercept of RV (proxy of alpha),

*  autocorrelation of RV?, i.e. corr(RV;%,,RV}?).

Finally, we will normalize the features and the target variables (using the min-max linear
method) based on the minimum and maximum of the variables in the dataset so that each
variable range is between0and 1. This is in particular important for the target variables since
otherwise the standard sum-of-squared-differences error function would implicitly assign
different weights to the target variables depending on their magnitudes. Regarding the size of
the training dataset, we will use N = 50 000, but smaller or larger datasets can be certainly
sampled depending on the computational resources. The training of a feed-forward neural
network will be performed in Matlab (2021b) using the standard Levenberg-Marquardt
algorithm (Levenberg, 1944, or Marquardt, 1963).



Figure 3 - A neural network training summary report produced by Matlab
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Figure 3 shows an example of asummary reportfortraining of a neuralnetwork with two hidden
layers, each with 20 neurons (with the sigmoid activation function). The reported performance
0.0372 in terms of the mean-square-error of the standardized target can be interpreted (after
taking the square root) as an average relative error of the estimation model on the testing
dataset. Note that the training procedure took approximately 28 minutes on a standard
notebook computerwith the Inteli7 processor. This is a one-time larger computational cost, in
fact much smallerthanin case of the MCMCalgorithm, and then the evaluation of the estimates
on a given set of inputs takes just a fraction of a second. The algorithm randomly splits the
original training dataset into the “Train”, “Validation”, and “Test” datasets (in the proportion
70:15:15), and optimizesthe erroronthe “Train” dataset periodically checking the performance
on the “Validation” dataset. The final performance is reported on the “Test” dataset. However,
to double check the performance we shall also sample an additional testing dataset (e.g. with
2 000 observations) that will not be used in the training procedure at all, and in the empirical
section we report the performance on this pure out-of-sample dataset.

4. Empirical results

4.1. The methodology of comparison between the MCMC and NN estimation
methods

Asoutlinedin the introduction, the advantage of the MCMC method is that it gives an empirical
approximation of the full posterior distribution p (@ldata) of the parameters given the data, ie.
the time series of returnsin our case. In practice, the mean, median, or mode of the distribution
can be used as the point estimates © = fucmc(data) and, in addition, the empirical density
gives us a full picture of the Bayesian error distribution. Therefore, the variance of p(@ldata)
can be interpreted as the irreducible error that cannot be eliminated by any statistical estimator.

Generally, for any statistical learning algorithm trying to estimate a target Y given a vector of
features X, the error can be decomposed into the irreducible error given by p(Y|X), the
estimator f (X) variance, and the bias:

E [(Y - fT(X))2 |X] = var[YIX] + E [(E[fT(X)] = fT(X))2 |X] + (EIYIX] - E[fr(01x])°



Note that the estimator fT (X) depends also on the training dataset T, implicitly assuming that
(X,Y) drawn from the testing dataset is independent on the set T (see Hastie et al., 2009).

If the targetY wasa function of X, then the irreducible error would be equal to zero! However,
if Y is not uniquely determined by X incorporating some noise or some unknown information,
thentheirreducible errorbecomes positive, i.e. it depends on the “information content” of the
vector of features!

Therefore, the goal might be to compare the error of the NN estimator with the standard
deviation of p(@ldata). However, there are at least two issues with this approach. Firstly, the
NN model (feed-forward NN), gives us only point estimates fyy (data) and itis not obvious how
to approximate the posteriordistribution p(®ldata) or at least its variance using a NN model.
Secondly, the MCMC point estimates based on a feasible computational time oftenturn out to
have a substantial error with respect to the true values. Hence, the MCMC error should
incorporate not only variance of p(@ldata), but also variance of the point estimate
0 = fucuc(data) = E[0®|datal.

We shall report the standard deviation of p(®ldata) or its average value over a collection of
data (sampled time series) used as input of the MCMC algorithm. However, to conclude the
discussion, we will simply focus on RMSE, R-squared, or the bias based on the sampled

parameters ©; (and return series data;) and the point estimates @j, ie.

1K, 2
RMSE = EEl(Of_Of) :

for both estimation methods. Alternatively, we will also reportthe results with a fixed “typical”
parameter vector © and sample only the time series of returns data;.

4.2. MCMC estimation results

To illustrate the performance of the MCMC algorithm, we have firstly fixed a set of “true” HM
parameters (see the 15t row of Table 1), repeated (100 times) sampling of the daily return time
series (of length 1000), and run (for sampled return series) the MCMC estimation algorithm with
3000 iterations. Figure 4 gives example of the iteratively sampled estimates of the most
problematic parameter p fluctuating around its true value set to —0.5. It indicates that the
convergence to the posterior distribution is relatively fast, and, at the same time that the
irreducible error forthis parameter (posterior variance) willbe quite large. The acceptance ratio
of the p parameter proposals (and similarly for the other parameters) is around 60-90%
indicating that the algorithm works well. We have also tested implementation of the MCMC
algorithm with a larger number of iterations, e.g. 6 000 or 10 000, and achieved only a small
improvement against a substantially higher computational time.



Figure 4 - An example of the parameter p MCMC estimates convergence
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Table 1 summarizes the results of the 100 MCMC estimations where the point estimates are
defined as means of the sampled values with the burnout period set to 1 499, i.e. as the means
of values sampledin the 1500t to 3000 iteration. The table givesthe mean of the 100 MCMC
estimates and the mean of the 100 posteriorstandard deviations of the individual parameters.
In addition, it shows the RMSE and bias of the point estimates with respectto the true values.
For example, focusingon p, the estimated average posterior standard deviation corresponding
to the theoretical irreducible error is relatively large 0.0962, but in addition the RMSE with
respecttothe true value isevenlarger(0.1974) caused mainly by the bias (0.1294). The bias and
the RMSE should theoretically disappear if the length of the chain converged to infinity, which
is, of course, impossible in practice. The errors of the other parameters appear to be much
smaller, but this is to large extent caused by their low levels or narrow ranges sampled in the
training dataset (see Section 3). For a betterrelative comparison, one should look at the values
normalized with respect to the minimum and maximum values of the parametersinthe training
dataset. Then it turns out that the relative errors (RMSE_n and Bias_n) are also quite large,
between 10% to 60%, with the overall normalized RMSE being approximately 28%.

Table 1 — MCMC results with fixed parameters and based on 100 estimation runs

m alpha beta gamma rho
True val. 0.0012 0.0000 0.9900 0.0013 -0.5000
Mean est. 0.0011 0.0000 0.9824 0.0013 -0.3706
RMSE 0.0004 0.0000 0.0101 0.0002 0.1974
Bias -0.0001 0.0000 -0.0076 0.0001 0.1294
Post std 0.0003 0.0000 0.0061 0.0001 0.0962
RMSE_n 0.2938 0.1119 0.6294 0.1324 0.1645
Bias_n -0.0504 0.1119 -0.4733 0.0300 0.1079

The performance of the MCMC method on 500 parameter vectors sampled from the ranges

specifiedin Section 3 is reportedin Table 2. Again, focusingfirstly on the parameter p, we can

notice that the average posterior standard deviation is approximately the same (0.1022) as in
1

2
500( A :

50021 (pj—pj) with

variable ©; turns out to be substantially larger (0.3316) which is caused mainly by the bias

the case with fixed parameters, but that the point estimate RMSE = \/

10



(0.1872). The R? of the p estimate is not too large, but at least positive (0.2012). It is interesting
to note that the R? of all the other parameter are negative which is caused by relatively large
estimation biases. A better comparison of the estimation precision in terms of RMSE and bias
can be obtained looking rather on the normalized values in the last two rows of Table 2. The
mean normalized RMSE across all parameters appears very high at around 55%.

The calculation took over 20 hours of Matlab 2021b four workers parallel computing on a Core
i7 desktop computer. As mentioned above the results improved only slightly when the number
of MCMCiterations was increased to 10 000, butthe computational time wentto more than 60
hours.

Table 2 — MCMC results with variable parameters sampled 500 times

m alpha beta gamma rho
RMSE 0.0004 0.0000 0.0197 0.0005 0.3316
Bias -0.0000 0.0000 -0.0156 0.0004 0.1872
R? -0.5944 -8.1504 -17.5456 -0.2145 0.2012
Post std 0.0004 0.0000 0.0082 0.0001 0.1022
RMSE_n 0.3643 0.5802 1.2288 0.2875 0.2764
Bias_n -0.0396 0.3917 -0.9637 0.2078 0.1560

The performance of the estimations can be further analyzed, for example, with the Mincer-
Zarnowitz test regressing the true parametervalues against the estimates, 8 = a + 80 + . For
example, in case of p, the Mincer-Zarnowitz regression correcting for the bias and slope (a and
B) shows a relatively good R-squared of 0.467. The issue with the quite low slope (that should
be optimally equal to 1) is also illustrated by the scatter-plotin the left part of Figure 5. The
right-hand part of the figure shows the wide distribution and a large bias of the estimation
errors, i.e. of p; — pj, j =1,...,500.

Table 3 — Mincer-Zarnowitz regression of true versus estimated values of p (MCMC)

Estimate s.e. t-statistics p-value
a -0.2063 0.0134 -15.376 6.09e-44
B 0.8624 0.0413 20.871 5.698e-70

Number of observations: 500, Error degrees of freedom: 498

RMSE: 0.271, R-squared: 0.467, Adjusted R-squared: 0.466
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Figure 5 - The true vs. estimated p scatter plot (left figure) and the estimation error distribution
(McmC)

06
1.6 T —
/’\

04l
02f

ol
02f osl \
04t

0.6

<06 0.4 |

08 02f / \.

4.3. NN estimation results

Next, letus look at the performance of the NN estimator. As described in Section 3 the NN with
two hidden layers (both with 20 neurons) was trained on a dataset of 50000 synthetically
generated observations, i.e.sets of generalized moments (features) calculated from daily retum
time series of length 1000 conditional on sampled parametervectors (targets). The training itself
took less than 30 minutes with results given in Figure 3. The reported performance (0.0372)
should be interpreted as the mean-squared error of the normalized parameter estimates
corresponding to the average normalized RMSE around 0.193.

Let usfirstly look at the NN out-sample performance (Table 4) when wefix the set of parameters
as above (compare with Table 1). Since one estimation takes less than a second, we can easily
run it 500 times (sampling the time series and the generalized moments based on the fixed
vector of parameters). Table 4 demonstrates substantially better performance of the NN
estimator compared to MCMC with an overall normalized RMSE equal approximately to 19%
(compared to 28% in case of MCMC). The better RMSE appears to be related mainly to much
lower biases, for example just 0.0217 in case of p (compared to 0.1294 for the MCMC).

Table 4 — NN estimation results with fixed parameters and based on 500 times sampled return series

m alpha beta gamma rho
True val. 0.0012 0.0000 0.9900 0.0013 -0.5000
Mean est. 0.0008 0.0000 0.9880 0.0013 -0.4783
RMSE 0.0004 0.0000 0.0030 0.0002 0.1694
Bias -0.0004 0.0000 -0.0020 0.0000 0.0217
RMSE_n 0.3347 0.0968 0.1850 0.1227 0.1412
Bias_n -0.2950 0.0681 -0.1254 0.0091 0.0181

Finally, Table 5 reports the NN performance on the full out-of-sample testing dataset with
variable parameters and 2000 observations. The overall normalized RMSE (19%) is again
substantially lower than in case of MCMC (55%). It should be noted that in case of the variable
parametertesting datasetthe average biasesturn out to be almost negligible, both in absolute
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and relative terms, and unlike in case of MCMC, the R-squared values are positive and relatively
high for all the parameters.

Table 5—- NN estimation results with variable parameters on the testing dataset with 2 000 observations

m alpha beta gamma rho
RMSE 0.0003 0.0000 0.0043 0.0002 0.2389
Bias 0.0000 0.0000 -0.0000 0.0000 0.0025
R? 0.3701 0.6328 0.1566 0.7631 0.5325
RMSE_n 0.0003 0.0000 0.0043 0.0002 0.2389
Bias_n 0.0000 0.0000 -0.0000 0.0000 0.0025

For the sake of completeness, Table 6 reports the Mincer-Zarnowitz regression results. In this
case, the NN estimator passes the test with the intercept not being significantly different from
0 and the slope not significantly different from 1. Figure 6 also visually indicates superiority of
the NN estimator compared to MCMC (see Figure 5).

Table 6 — Mincer-Zarnowitz regression of true versus estimated values of p (NN)

Estimate s.e. t-statistics p-value
a -0.0025 0.0083 -0.3021 0.76255
B 1.0021 0.0210 47,711 0

Number of observations:2000, Error degrees of freedom: 1998

RMSE: 0.239, R-squared: 0.533, Adjusted R-squared: 0.532

Figure 6 - The true vs. estimated p scatter plot (left figure) and the estimation error distribution (NN)
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Interpretability of the NN model

One of the disadvantages of neural networks, often discussed by researchers and practitioners
(see e.g. Hull, 2021), is their Blackbox character, i.e. their difficult interpretability in terms of
dependence of the output targer values on the input feature values. The most well-known
methods to handle the issues are the LIME (Local Interpretable Model-Agnostic Explanations)

and the method of Shapley values.
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Shapley values calculate average impact of each feature value of a query point with respectto
its expectation considering all possible combinations of the other features values at the query
point. On the otherhand, Lime simply interpolatesthe data locally at a query point by a linear
model (or tree for a categorical model), selects anumber of variables and shows the prediction
of the approximate simple model. In case of a higher dimensional target, the analysis needs to
be done separately for individual coordinates of the output vector.

In our case, we considerthe Lime method as easierto apply and interpretin orderto check that
the most important explanatory variables (features) and their impact correspond with our
intuition.

Figure 7 - The most important 5 variables and their coefficients estimated by LIME for p and 8
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For example, Figure 7 shows the five most important features selected by Lime and the
estimated coefficients of the approximating model predicting p (left) and S (right). The query
pointat which the models are evaluated is set to the mode of the (testing) dataset, howeverthe
estimated Lime modelis, in fact, global, i.e. it is the linear model estimated on the full dataset
(with the min-max standardized feature and target values). It turns out that the selected
features and their signs are consistent with our intuition and document importance of the
concept of realized volatility.

The five selected features for p in the ordershown on the figure (left part) are: corr(RV}, Rc;),
corr(RV; —RV;_1,Rcj),  corr(RV; — RV;_4,Rcj_1), corr(Ve—1 lyel = lye—1l),  and
corr(yt,yt_z). The five selected features for B (right part) are: var(RV), kurtosis(RV), AR (1)
intercept of RV, and lag 1-2 autocorrelations of RV, where RV is the 20-day realized variance.

5. Discussion and Conclusions

We have outlined a flexible neural network application to estimation of unknown parameters of
a model based on a large synthetically generated dataset conditional on the data-generating
model. Our specific hypothesis was that this approach can provide more precise and
computationally efficient estimates of the Heston model parameters compared to state -of-the-
art probabilistic methods such as the Bayesian MCMC. We have implemented and compared
both methods on relatively large testing datasets. The empirical results have confirmed our
hypothesis in both directions: the NN parameter estimation approach is substantially faster
compared to the MCMCmethod, and in addition the estimations are more precise. To mention
some advantages of MCMC, this method gives an empirical approximation of the posterior
parameterdistribution and estimates the latent state variables (i.e. stochastic volatilities in case
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of the HM) together with the model parameters. On the other hand, animportant advantage of
the NN approach is its relative simplicity compared to the MCMC method requiring a careful
formulation of marginal and proposal densities. We have applied the simplest feed-forward NN
requiring to condense a large time series to a limited number of features defined as a set of
selected generalized moments. However, we believe that even this “manual” part of the
estimation procedure could be eliminated applying the convolutional or similar NN, which is a
direction of our further research.

Regarding the provocative subtitle “Forget Statistics — Machine Learning is Sufficient!” of the
paper, we do believe that the NN estimation approach might indeed outperform the classical
methodsfora large class of models. This generalhypothesis has been confirmedin case of the
HM, but, of course, it remains to be tested on many other models, in particular on more complex
latent state space financial models that are difficult to estimate using the classical methods. To
conclude in more moderate and realistic terms, we believe that the NN approach can provide
more efficient estimates compared to the classical statistical methods, but we agree that the
classical probability and statistics theory is of course needed in order to study and assess
properties of such novel machine learning methods.
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